Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 124-142, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942608

RESUMO

BACKGROUND: Patients with constitutive activation of DNA-sensing pathway through stimulator of IFN (interferon) genes (STING), such as those with STING-associated vasculopathy with onset in infancy, develop pulmonary hypertension (PH). However, the role of STING signaling in general PH patients is heretofore undescribed. Here, we seek to investigate the role of STING in PH development. METHODS: STING expression in patient lung samples was examined. PH was induced in global STING-deficient mice and global type I IFN receptor 1-deficient mice using bleomycin or chronic hypoxia exposure. PH development was evaluated by right ventricular systolic pressure and Fulton index, with additional histological and flow cytometric analysis. VEGF (vascular endothelial growth factor) expression on murine immune cells was quantified and evaluated with multiplex and flow cytometry. Human myeloid-derived cells were differentiated from peripheral blood mononuclear cells and treated with either STING agonist or STING antagonist for evaluation of VEGF secretion. RESULTS: Global STING deficiency protects mice from PH development, and STING-associated PH seems independent of type I IFN signaling. Furthermore, a role for STING-VEGF signaling pathway in PH development was demonstrated, with altered VEGF secretion in murine pulmonary infiltrated myeloid cells in a STING-dependent manner. In addition, pharmacological manipulation of STING in human myeloid-derived cells supports in vivo findings. Finally, a potential role of STING-VEGF-mediated apoptosis in disease development and progression was illustrated, providing a roadmap toward potential therapeutic applications. CONCLUSIONS: Overall, these data provide concrete evidence of STING involvement in PH, establishing biological plausibility for STING-related therapies in PH treatment.


Assuntos
Hipertensão Pulmonar , Interferon Tipo I , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Hipertensão Pulmonar/genética , Leucócitos Mononucleares/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo
2.
Immunohorizons ; 7(2): 168-176, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729482

RESUMO

Notch ligands present during interactions between T cells and dendritic cells (DCs) dictate cell phenotype through a myriad of effects including the induction of T cell regulation, survival, and cytokine response. The presence of Notch ligands on DCs varies with the context of the inflammatory response; Jagged-1 is constitutively expressed, whereas Delta-like 1 and Delta-like 4 are induced in response to pathogen exposure. Although Delta-like and Jagged ligands send different signals through the same Notch receptor, the role of these two ligands in peripheral T cell immunity is not clear. The goal of our studies was to determine the role of Jagged-1 in the pathogen-free inflammation induced by OVA during allergic airway disease in mice. Our studies show that a deletion in DC-expressed Jagged-1 causes a significant increase in cytokine production, resulting in increased mucus production and increased eosinophilia in the lungs of mice sensitized and challenged with OVA. We also observed that a reduction of Jagged-1 expression is correlated with increased expression of the Notch 1 receptor on the surface of CD4+ T cells in both the lung and lymph node. Through transfer studies using OT-II transgenic T cells, we demonstrate that Jagged-1 represses the expansion of CD44+CD62L+CCR7+ memory cells and promotes the expansion of CD44+CD62L- effector cells, but it has no effect on the expansion of naive cells during allergic airway disease. These data suggest that Jagged-1 may have different roles in Ag-specific T cell responses, depending on the maturity of the stimulated T cell.


Assuntos
Hipersensibilidade , Células Th2 , Camundongos , Animais , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
3.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326418

RESUMO

Existing 3D cell models and technologies have offered tools to elevate cell culture to a more physiologically relevant dimension. One mechanism to maintain cells cultured in 3D is by means of perfusion. However, existing perfusion technologies for cell culture require complex electronic components, intricate tubing networks, or specific laboratory protocols for each application. We have developed a cell culture platform that simply employs a pump-free suction device to enable controlled perfusion of cell culture media through a bed of granular microgels and removal of cell-secreted metabolic waste. We demonstrated the versatile application of the platform by culturing single cells and keeping tissue microexplants viable for an extended period. The human cardiomyocyte AC16 cell line cultured in our platform revealed rapid cellular spheroid formation after 48 h and ~90% viability by day 7. Notably, we were able to culture gut microexplants for more than 2 weeks as demonstrated by immunofluorescent viability assay and prolonged contractility.


Assuntos
Técnicas de Cultura de Células , Esferoides Celulares , Linhagem Celular , Humanos , Perfusão
4.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34357881

RESUMO

Cell lines are the mainstay in understanding the biology of COVID-19 infection but do not recapitulate many of the complexities of human infection. The use of human lung tissue is one solution for the study of such novel respiratory pathogens. We hypothesized that a cryopreserved bank of human lung tissue would allow for the ex vivo study of the interindividual heterogeneity of host response to SARS-CoV-2, thus providing a bridge between studies with cell lines and studies in animal models. We generated a cryobank of tissues from 21 donors, many of whom had clinical risk factors for severe COVID-19. Cryopreserved tissues preserved 90% cell viability and contained heterogenous populations of metabolically active epithelial, endothelial, and immune cell subsets of the human lung. Samples were readily infected with HCoV-OC43 and SARS-CoV-2 and demonstrated comparable susceptibility to infection. In contrast, we observed a marked donor-dependent heterogeneity in the expression of IL6, CXCL8, and IFNB1 in response to SARS-CoV-2. Treatment of tissues with dexamethasone and the experimental drug N-hydroxycytidine suppressed viral growth in all samples, whereas chloroquine and remdesivir had no detectable effect. Metformin and sirolimus, molecules with predicted but unproven antiviral activity, each suppressed viral replication in tissues from a subset of donors. In summary, we developed a system for the ex vivo study of human SARS-CoV-2 infection using primary human lung tissue from a library of donor tissues. This model may be useful for drug screening and for understanding basic mechanisms of COVID-19 pathogenesis.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Imunidade Inata/imunologia , Interferons/uso terapêutico , Pulmão/patologia , SARS-CoV-2 , Idoso , COVID-19/imunologia , Linhagem Celular , Feminino , Humanos , Pulmão/imunologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA