Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecol Evol ; 14(3): e11088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435019

RESUMO

Life-history theory predicts that reproductive investments are traded-off against self-maintenance. Telomeres, the protective caps on the ends of chromosomes, offer a promising avenue for assessing life-history trade-offs, as they shorten in response to stressors and are predictive of the remaining lifespan. In males, testosterone frequently mediates life-history trade-offs, in part, through its effects on sexual ornamentation, which is an important aspect of reproductive investment. However, studies of within-individual associations between telomere dynamics and sexual ornamentation are limited in number and have produced mixed results. Furthermore, most such studies have been observational, making it difficult to discern the nature of any causal relationship. To address this, we used short-acting testosterone implants in free-living male superb fairy-wrens (Malurus cyaneus) to stimulate the production of a sexual ornament: early moult into a costly blue breeding plumage. We found no evidence that elevated testosterone, and the consequent earlier moult into breeding plumage, accelerated telomere shortening. We therefore followed up with a systematic review and two meta-analyses (28 studies, 54 effect sizes) exploring the associations between telomeres and (1) testosterone and (2) sexual ornamentation. In line with our experimental findings, neither meta-analysis showed an overall correlation of testosterone or sexual ornamentation with telomere length or telomere dynamics. However, meta-regression showed that experimental, compared to observational, studies reported greater evidence of trade-offs. Our meta-analyses highlight the need for further experimental studies to better understand potential responses of telomere length or telomere dynamics to testosterone or sexual ornamentation.

2.
Biol Rev Camb Philos Soc ; 99(2): 598-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062628

RESUMO

Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.


Assuntos
Lagartos , Animais , Temperatura , Lagartos/fisiologia , Clima , Aquecimento Global
3.
Oecologia ; 203(3-4): 491-502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982911

RESUMO

Integument colouration can influence many aspects of fitness, and is under strong sexual selection. Amphibians often express sexual dichromatism, and ultra-violet (UV) colouration is usually biased toward males as a sexual signal. As an honest signal, colouration is related to several individual traits, but can also be related to environmental factors such as anthropogenic pollutants, to which amphibians are highly sensitive. In this study, we investigated sexual dichromatism and UV reflectance covering a large visual spectrum (wavelength ranging from 300 to 700 nm) on different body areas (throat, ventral and dorsal areas), in a widespread amphibian species, the spiny toad (Bufo spinosus). Then, we tested the impact of chronic exposure to two widespread herbicides (glyphosate's primary metabolite [AMPA] and Nicosulfuron) on their colouration. We found a strong but unexpected sexual dichromatism with females reflecting more in the UV spectrum (throat and ventral area) than males, suggesting these body parts might be critical in intra-specific signalling. Females with higher ventral UV reflectance were in better body condition, suggesting an honest signal role of UV reflectance which could influence male choice. Throat colouration was further differentially influenced by agrochemicals according to sexes. In AMPA-exposed males, throat was more saturated in yellow-orange than in control males, and Nicosulfuron exposure decreased the throat's reflectance hue in females, which can bear consequences on mate attractiveness. Future studies need to investigate the underlying mechanisms that are altered by agrochemical exposure.


Assuntos
Bufonidae , Piridinas , Humanos , Animais , Feminino , Masculino , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Compostos de Sulfonilureia , Pigmentação
4.
Mol Ecol ; 32(19): 5382-5393, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606092

RESUMO

Exposure to rising sublethal temperatures can affect development and somatic condition, and thereby Darwinian fitness. In the context of climate warming, these changes could have implications for population viability, but they can be subtle and consequently difficult to quantify. Using telomere length (TL) as a known biomarker of somatic condition in early life, we investigated the impact of pre-hatching and nestling climate on six cohorts of wild nestling superb fairy wrens (Malurus cyaneus) in temperate south-eastern Australia. Models incorporating only climate information from the nestling phase were best supported compared to those including the (pre-)laying to incubation phase (previously shown to affect mass) or both phases combined. This implies that nestling TL is most sensitive to ambient climate in the nestling phase. The top model showed a negative relationship between early-life TL and nestling mean daily minimum temperature when rainfall was low which gradually became positive with increasing rainfall. In addition, there was a positive relationship between TL and the frequency of hot days (daily maximum temperature ≥35°C), although these temperatures were rare and short-term. Including other pre-hatching and nestling period, climate variables (e.g., mean daily maximum temperature and mean diurnal temperature variability) did not improve the prediction of nestling TL. Overall, our results suggest that cooler nights when conditions are dry and short-term temperature spikes above 35°C during development are conducive for somatic maintenance. While these findings indicate a potential pathway for climate warming to impact wildlife fitness, they emphasize the need to elucidate the mechanisms underlying these complex associations.


Assuntos
Passeriformes , Aves Canoras , Animais , Aves Canoras/genética , Clima , Temperatura , Telômero/genética
5.
Mar Environ Res ; 191: 106149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611374

RESUMO

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.

6.
Mol Ecol ; 32(11): 3000-3013, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811398

RESUMO

Suboptimal conditions during development can shorten telomeres, the protective DNA caps on the end of chromosomes. Shorter early-life telomere length (TL) can indicate reduced somatic maintenance, leading to lower survival and shorter lifespan. However, despite some clear evidence, not all studies show a relationship between early-life TL and survival or lifespan, which may be due to differences in biology or study design (e.g., survival period measured). In superb fairy-wrens (Malurus cyaneus), we assessed whether early-life TL predicts mortality across different life-history stages (fledgling, juvenile, adult). However, in contrast to a similar study on a congener, early-life TL did not predict mortality across any life stage in this species. We then performed a meta-analysis including 32 effect sizes from 23 studies (15 birds and three mammals) to quantify the effect of early-life TL on mortality whilst taking into consideration potential sources of biological and methodological variation. Overall, the effect of early-life TL on mortality was significant, corresponding to a 15% reduction in mortality risk with each standard deviation increase in TL. However, the effect became weaker when correcting for publication bias. Contrary to our predictions, there was no evidence that effects of early-life TL on mortality varied with species lifespan or the period over which survival was measured. However, negative effects of early-life TL on mortality risk were pervasive throughout life. These results imply that effects of early-life TL on mortality are more likely to be context-dependent than age-dependent, although substantial power and publication bias issues highlight the need for more research.


Assuntos
Longevidade , Aves Canoras , Animais , Longevidade/genética , Encurtamento do Telômero , Telômero/genética , Aves Canoras/genética , Projetos de Pesquisa , Mamíferos/genética
7.
Proc Natl Acad Sci U S A ; 119(33): e2201371119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939680

RESUMO

Aging is the price to pay for acquiring and processing energy through cellular activity and life history productivity. Climate warming can exacerbate the inherent pace of aging, as illustrated by a faster erosion of protective telomere DNA sequences. This biomarker integrates individual pace of life and parental effects through the germline, but whether intra- and intergenerational telomere dynamics underlies population trends remains an open question. Here, we investigated the covariation between life history, telomere length (TL), and extinction risk among three age classes in a cold-adapted ectotherm (Zootoca vivipara) facing warming-induced extirpations in its distribution limits. TL followed the same threshold relationships with population extinction risk at birth, maturity, and adulthood, suggesting intergenerational accumulation of accelerated aging rate in declining populations. In dwindling populations, most neonates inherited already short telomeres, suggesting they were born physiologically old and unlikely to reach recruitment. At adulthood, TL further explained females' reproductive performance, switching from an index of individual quality in stable populations to a biomarker of reproductive costs in those close to extirpation. We compiled these results to propose the aging loop hypothesis and conceptualize how climate-driven telomere shortening in ectotherms may accumulate across generations and generate tipping points before local extirpation.


Assuntos
Envelhecimento , Extinção Biológica , Aquecimento Global , Lagartos , Encurtamento do Telômero , Telômero , Envelhecimento/genética , Animais , Feminino , Lagartos/genética , Dinâmica Populacional , Reprodução , Risco , Telômero/genética
8.
J Comp Physiol B ; 192(6): 765-774, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35922677

RESUMO

Stress hormones and their impacts on whole organism metabolic rates are usually considered as appropriate proxies for animal energy budget that is the foundation of numerous concepts and models aiming at predicting individual and population responses to environmental stress. However, the dynamics of energy re-allocation under stress make the link between metabolism and corticosterone complex and still unclear. Using ectopic application of corticosterone for 3, 11 and 21 days, we estimated a time effect of stress in a lizard (Zootoca vivipara). We then investigated whole organism metabolism, muscle cellular O2 consumption and liver mitochondrial oxidative phosphorylation processes (O2 consumption and ATP production) and ROS production. The data showed that while skeletal muscle is not impacted, stress regulates the liver mitochondrial functionality in a time-dependent manner with opposing pictures between the different time expositions to corticosterone. While 3 days exposition is characterized by lower ATP synthesis rate and high H2O2 release with no change in the rate of oxygen consumption, the 11 days exposition reduced all three fluxes of about 50%. Oxidative phosphorylation capacities in liver mitochondria of lizard treated with corticosterone for 21 days was similar to the hepatic mitochondrial capacities in lizards that received no corticosterone treatment but with 40% decrease in H2O2 production. This new mitochondrial functioning allows a better capacity to respond to the energetic demands imposed by the environment but do not influence whole organism metabolism. In conclusion, global mitochondrial functioning has to be considered to better understand the proximal causes of the energy budget under stressful periods.


Assuntos
Lagartos , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Corticosterona/farmacologia , Metabolismo Energético , Glucocorticoides , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Lagartos/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
9.
J Anim Ecol ; 91(9): 1906-1917, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35837855

RESUMO

Male lizards often display multiple pigment-based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated. Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation. We performed an integrative study to examine the covariation between three colour signals (melanin-based black, carotenoid-based yellow-orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizards Zootoca vivipara from 13 populations. We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis. We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism.


Les lézards mâles arborent souvent plusieurs signaux colorés de nature pigmentaire et structurale qui reflètent de multiples traits de qualité (e.g. performance, parasitisme), et la testostérone (T) joue souvent un rôle de médiateur dans ces relations. En outre, les conditions environnementales peuvent également expliquer les variations des signaux colorés en influençant des aspects tels que l'efficacité des signaux, la thermorégulation ou le camouflage. Les relations entre signaux colorés, traits de qualité individuelle et facteurs environnementaux ont souvent été analysées séparément, mais rarement de manière simultanée. Ainsi, la réponse de ces multiples signaux colorés aux variations de tous ces facteurs reste à explorer dans le contexte d'une étude intégrative. Ici, nous explorons la relation entre ces multiples signaux colorés et leur contenu informatif, nous examinons le rôle de T comme médiateur potentiel de ces relations et nous recherchons si les conditions environnementales expliquent la variation de ces signaux colorés. Nous avons mené une étude intégrative afin d'examiner la covariation entre trois types de signaux colorés (noir produit par la mélanine, jaune-orange produit par les caroténoïdes et UV produit par des éléments structuraux), la performance physiologique, le parasitisme, les niveaux de T et les conditions environnementales (e.g. microclimat, couverture forestière) chez des mâles du lézard vivipare (Zootoca vivipara) provenant de 13 populations. Nos résultats indiquent que les trois signaux colorés transmettent des informations sur différents aspects de la condition des mâles, en accord avec l'hypothèse de « messages multiples ¼. T influence uniquement le parasitisme, suggérant que T n'agit pas en tant que médiateur des relations entre ces signaux colorés et leur contenu informatif. De plus, les signaux colorés sont plus saturés dans les habitats les plus forestiers, ce qui suggère une adaptation à des conditions lumineuses dégradées. Enfin, les signaux colorés sont plus intenses lorsque les conditions sont mésiques, en contradiction avec l'hypothèse du mélanisme thermal. Nous démontrons que différents traits de qualité individuelle et facteurs environnementaux expliquent de manière simultanée les variations de multiples signaux colorés impliquant différents modes de production. Notre étude souligne ainsi la complexité de l'évolution des signaux colorés, qui implique plusieurs types de pressions de sélection agissant en même temps mais dans des directions différentes selon le mode de production.


Assuntos
Lagartos , Animais , Carotenoides/metabolismo , Cor , Lagartos/fisiologia , Masculino , Fenótipo , Pigmentação
10.
J Anim Ecol ; 90(8): 1864-1877, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33884616

RESUMO

In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations. Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate. We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks. Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation. Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. ​.


Assuntos
Lagartos , Animais , Regulação da Temperatura Corporal , Mudança Climática , Aquecimento Global , Carga Parasitária , Temperatura
11.
PLoS One ; 16(2): e0247514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635881

RESUMO

Thermoregulation is critical for ectotherms as it allows them to maintain their body temperature close to an optimum for ecological performance. Thermoregulation includes a range of behaviors that aim at regulating body temperature within a range centered around the thermal preference. Thermal preference is typically measured in a thermal gradient in fully-hydrated and post-absorptive animals. Short-term effects of the hydric environment on thermal preferences in such set-ups have been rarely quantified in dry-skinned ectotherms, despite accumulating evidence that dehydration might trade-off with behavioral thermoregulation. Using experiments performed under controlled conditions in climatic chambers, we demonstrate that thermal preferences of a ground-dwelling, actively foraging lizard (Zootoca vivipara) are weakly decreased by a daily restriction in free-standing water availability (less than 0.5°C contrast). The influence of air humidity during the day on thermal preferences depends on time of the day and sex of the lizard, and is generally weaker than those of of free-standing water (less than 1°C contrast). This shows that short-term dehydration can influence, albeit weakly, thermal preferences under some circumstances in this species. Environmental humidity conditions are important methodological factors to consider in the analysis of thermal preferences.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Umidade , Lagartos/fisiologia , Fenômenos Fisiológicos da Pele , Água , Animais , Ecossistema , Feminino , Masculino , Temperatura
12.
J Exp Biol ; 223(Pt 19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046578

RESUMO

One of the greatest current threats to biodiversity is climate change. However, understanding of organismal responses to fluctuations in temperature and water availability is currently lacking, especially during fundamental life-history stages such as reproduction. To further explore how temperature and water availability impact maternal physiology and reproductive output, we used the viviparous form of the European common lizard (Zootoca vivipara) in a two-by-two factorial design manipulating both hydric and thermal conditions, for the first time. We collected blood samples and morphological measurements during early pregnancy and post-parturition to investigate how water availability, temperature and a combination of the two influence maternal phenology, morphology, physiology and reproductive output. We observed that dehydration during gestation negatively affects maternal physiological condition (lower mass gain, higher tail reserve mobilization) but has little effect on reproductive output. These effects are mainly additive to temperature regimes, with a proportional increase in maternal costs in warmer environments. Our study demonstrates the importance of considering combined effects of water and temperature when investigating organismal responses to climate changes, especially during periods crucial for species survival such as reproduction.


Assuntos
Lagartos , Animais , Reprodução , Temperatura , Viviparidade não Mamífera , Água
13.
Ecol Evol ; 10(15): 8007-8017, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788957

RESUMO

Regulation of body temperature is crucial for optimizing physiological performance in ectotherms but imposes constraints in time and energy. Time and energy spent thermoregulating can be reduced through behavioral (e.g., basking adjustments) or biophysical (e.g., heating rate physiology) means. In a heterogeneous environment, we expect thermoregulation costs to vary according to local, climatic conditions and therefore to drive the evolution of both behavioral and biophysical thermoregulation. To date, there are limited data showing that thermal physiological adjustments have a direct relationship to climatic conditions. In this study, we explored the effect of environmental conditions on heating rates in the common lizard (Zootoca vivipara). We sampled lizards from 10 populations in the Massif Central Mountain range of France and measured whether differences in heating rates of individuals correlated with phenotypic traits (i.e., body condition and dorsal darkness) or abiotic factors (temperature and rainfall). Our results show that heat gain is faster for lizards with a higher body condition, but also for individuals from habitats with higher amount of precipitation. Altogether, they demonstrate that environmentally induced constraints can shape biophysical aspects of thermoregulation.

14.
Biol Lett ; 16(2): 20190889, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097601

RESUMO

Animals use a variety of strategies to avoid acute dehydration and death. Yet, how chronic exposure to sub-lethal dehydration may entail physiological and fitness costs remains elusive. In this study, we experimentally tested if water restriction causes increased oxidative stress (OS) and telomere length (TL) shortening, two well-described mediators of environment-fitness relationships. We exposed 100 yearling female and male common lizards (Zootoca vivipara) either to a 51-day period of water restriction or to water ad libitum, followed by 45 days in common garden outdoor conditions. We measured the kinetic changes in OS and TL and found that water-restricted males had enhanced antioxidant defences and decreased oxidative damage at day 36, whereas females did not immediately respond. A month and a half after water restriction, both sexes experienced a drop in antioxidant capacity but only males exhibited significant TL shortening. In the following 3 years, we found that lizards with longer initial TL and those who maintained stronger antioxidant defences experienced higher longevity, irrespective of sex and water restriction. Together, these results unravelled sex-specific responses to water restriction, with potential applications in better understanding the physiological costs of increasing summer droughts as a result of global climate change.


Assuntos
Lagartos , Encurtamento do Telômero , Animais , Antioxidantes , Feminino , Cavalos , Masculino , Estresse Oxidativo , Telômero , Água
15.
Physiol Biochem Zool ; 93(2): 160-174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32031477

RESUMO

Chronic changes in climate conditions may select for acclimation responses in terrestrial animals living in fluctuating environments, and beneficial acclimation responses may be key to the resilience of these species to global changes. Despite evidence that climate warming induces changes in water availability, acclimation responses to water restriction are understudied compared with thermal acclimation. In addition, acclimation responses may involve different modes, paces, and trade-offs between physiological and behavioral traits. Here, we tested the dynamical acclimation responses of a dry-skinned terrestrial ectotherm to chronic water restriction. Yearling common lizards (Zootoca vivipara) were exposed to sublethal water restriction during 2 mo of the summer season in laboratory conditions, then released in outdoor conditions for 10 additional months. Candidate behavioral (exploration, basking, and thermal preferences) and physiological (metabolism at rest and standard water loss rate) traits potentially involved in the acclimation response were measured repeatedly during and after water restriction. We observed a sequential acclimation response in water-restricted animals (yearlings spent less time basking during the first weeks of water deprivation) that was followed by delayed sex-specific physiological consequences of the water restriction during the following months (thermal depression in males and lower standard evaporative water loss rates in females). Despite short-term negative effects of water restriction on body growth, annual growth, survival, and reproduction were not significantly different between water-restricted and control yearlings. This demonstrates that beneficial acclimation responses to water restriction involve both short-term flexible behavioral responses and delayed changes in thermal and water biology traits.


Assuntos
Comportamento Animal/fisiologia , Lagartos/fisiologia , Privação de Água/fisiologia , Aclimatação/fisiologia , Animais , Feminino , Lagartos/crescimento & desenvolvimento , Lagartos/metabolismo , Masculino , Fatores Sexuais , Perda Insensível de Água
16.
Ecol Evol ; 9(17): 10029-10043, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534711

RESUMO

The regulation of body temperature (thermoregulation) and of water balance (defined here as hydroregulation) are key processes underlying ecological and evolutionary responses to climate fluctuations in wild animal populations. In terrestrial (or semiterrestrial) ectotherms, thermoregulation and hydroregulation closely interact and combined temperature and water constraints should directly influence individual performances. Although comparative physiologists traditionally investigate jointly water and temperature regulation, the ecological and evolutionary implications of these coupled processes have so far mostly been studied independently. Here, we revisit the concept of thermo-hydroregulation to address the functional integration of body temperature and water balance regulation in terrestrial ectotherms. We demonstrate how thermo-hydroregulation provides a framework to investigate functional adaptations to joint environmental variation in temperature and water availability, and potential physiological and/or behavioral conflicts between thermoregulation and hydroregulation. We extend the classical cost-benefit model of thermoregulation in ectotherms to highlight the adaptive evolution of optimal thermo-hydroregulation strategies. Critical gaps in the parameterization of this conceptual optimality model and guidelines for future empirical research are discussed. We show that studies of thermo-hydroregulation refine our mechanistic understanding of physiological and behavioral plasticity, and of the fundamental niche of the species. This is illustrated with relevant and recent examples of space use and dispersal, resource-based trade-offs, and life-history tactics in insects, amphibians, and nonavian reptiles.

17.
J Exp Biol ; 222(Pt 14)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31235506

RESUMO

Increased global temperatures have opened previously inhospitable habitats, such as at higher elevations. However, the reduction of oxygen partial pressure with increase in elevation represents an important physiological constraint that may limit colonization of such habitats, even if the thermal niche is appropriate. To test the mechanisms underlying the response to ecologically relevant levels of hypoxia, we performed a translocation experiment with the common wall lizard (Podarcis muralis), a widespread European lizard amenable to establishing populations outside its natural range. We investigated the impacts of hypoxia on the oxygen physiology and reproductive output of gravid common wall lizards and the subsequent development and morphology of their offspring. Lowland females transplanted to high elevations increased their haematocrit and haemoglobin concentration within days and maintained routine metabolism compared with lizards kept at native elevations. However, transplanted lizards suffered from increased reactive oxygen metabolite production near the oviposition date, suggesting a cost of reproduction at high elevation. Transplanted females and females native to different elevations did not differ in reproductive output (clutch size, egg mass, relative clutch mass or embryonic stage at oviposition) or in post-oviposition body condition. Developing embryos reduced heart rates and prolonged incubation times at high elevations within the native range and at extreme high elevations beyond the current range, but this reduced oxygen availability did not affect metabolic rate, hatching success or hatchling size. These results suggest that this opportunistic colonizer is capable of successfully responding to novel environmental constraints in these important life-history stages.


Assuntos
Altitude , Desenvolvimento Embrionário/fisiologia , Lagartos/fisiologia , Oxigênio/fisiologia , Fenótipo , Animais , Embrião não Mamífero/fisiologia , Feminino , França , Lagartos/crescimento & desenvolvimento , Reprodução
18.
Ecol Evol ; 9(11): 6524-6533, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236241

RESUMO

ABSTRACT: The evolution of sex determination is complex and yet crucial in our understanding of population stability. In ectotherms, sex determination involves a variety of mechanisms including genetic determination (GSD), environment determination (ESD), but also interactions between the two via sex reversal. In this study, we investigated whether water deprivation during pregnancy could override GSD in two heterogametic squamate reptiles. We demonstrated that water restriction in early gestation induced a male-biased secondary sex ratio in both species, which could be explained by water sex reversal as the more likely mechanism. We further monitored some long-term fitness estimates of offspring, which suggested that water sex determination (WSD) represented a compensatory strategy producing the rarest sex according to Fisher's assumptions of frequency-dependent selection models. This study provides new insights into sex determination modes and calls for a general investigation of mechanisms behind WSD and to examine the evolutionary implications. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.mv06pv1.

19.
J Therm Biol ; 77: 38-44, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30196897

RESUMO

Temperature affects the physiological functions of ectotherms. To maintain optimal body temperature and ensure physiological performance, these organisms can use behavioral adjustments to keep the body temperature in their specific temperature range, so-called preferred temperature (Tpref). It is therefore crucial to describe and understand how Tpref vary within and amongst populations to predict the effects of climate change of altitudinal range shifts in organisms. We aimed at determining the altitudinal variations in Tpref in three ectothermic species (the Pyrenean brook salamander - a semi-aquatic and thigmothermic amphibian - the European common lizard and the wall lizard - both heliothermic species). Using an experimental approach where Tpref were measured along a temperature gradient in laboratory conditions, we used a cross-sectional approach to compare the variation of Tpref measured in populations sampled along the altitudinal gradient in the Pyrenees. We hypothesized a complex and highly variable intra-specific response of Tpref along geographical clines, with a positive relationship between Tpref and altitude (as predicted by the countergradient variation), the reverse pattern (referring to the adaptation of local optima hypothesis), or no relationship at all. Our results corroborated partially the countergradient hypothesis in the salamander (middle to high elevation part). At high altitude level, individuals may compensate for lower opportunities of favorable conditions by choosing a high temperature which maximizes their activities. However, populations from low elevation level hence better supported the adaptation of local optima hypothesis, such as both lizard species, for which Tpref tended instead to decrease with altitude. Lizards from cold climates may be physiologically adapted to low temperature, with the ability to reach optimal functioning at lower temperature than individuals from low altitude. Our findings suggest that predicting future niche models should therefore take into account the variability of Tpref, where species might be differently affected by global warming.


Assuntos
Aclimatação , Altitude , Regulação da Temperatura Corporal , Lagartos/fisiologia , Urodelos/fisiologia , Animais , Temperatura Corporal , Mudança Climática , Clima Frio , Feminino , Aquecimento Global , Masculino , Especificidade da Espécie
20.
J Anim Ecol ; 87(5): 1331-1341, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701285

RESUMO

Climate change should lead to massive loss of biodiversity in most taxa, but the detailed physiological mechanisms underlying population extinction remain largely elusive so far. In vertebrates, baseline levels of hormones such as glucocorticoids (GCs) may be indicators of population state as their secretion to chronic stress can impair survival and reproduction. However, the relationship between GC secretion, climate change and population extinction risk remains unclear. In this study, we investigated whether levels of baseline corticosterone (the main GCs in reptiles) correlate with environmental conditions and associated extinction risk across wild populations of the common lizard Zootoca vivipara. First, we performed a cross-sectional comparison of baseline corticosterone levels along an altitudinal gradient among 14 populations. Then, we used a longitudinal study in eight populations to examine the changes in corticosterone levels following the exposure to a heatwave period. Unexpectedly, baseline corticosterone decreased with increasing thermal conditions at rest in females and was not correlated with extinction risk. In addition, baseline corticosterone levels decreased after exposure to an extreme heatwave period. This seasonal corticosterone decrease was more pronounced in populations without access to standing water. We suggest that low basal secretion of corticosterone may entail downregulating activity levels and limit exposure to adverse climatic conditions, especially to reduce water loss. These new insights suggest that rapid population decline might be preceded by a downregulation of the corticosterone secretion.


Assuntos
Lagartos , Animais , Corticosterona , Estudos Transversais , Feminino , Estudos Longitudinais , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA