Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 5: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700674

RESUMO

Because of the close interaction between tumors and the immune system, immunotherapies are nowadays considered as the most promising treatment against cancer. In order to define the diagnosis and the subsequent therapy, crucial information about the immune cells at the tumor site is needed. Indeed, different types or activation status of cells may be indicative for specific and personalized treatments. Here, we present a quantitative method to identify ten different immuno-markers in the same tumor cut section, thereby saving precious samples and enabling correlative analysis on several cell families and their activation status in a tumor microenvironment context. We designed and fabricated a microfluidic chip with optimal thermomechanical and optical properties for fast delivery of reagents on tissue slides and for fully automatic imaging by integration with an optical microscope. The multiplexing capability of the system is enabled by an optimized cyclic immunofluorescence protocol, with which we demonstrated quantitative sequential immunostaining of up to ten biomarkers on the same tissue section. Furthermore, we developed high-quality image-processing algorithms to map each cell in the entire tissue. As proof-of-concept analyses, we identified coexpression and colocalization patterns of biomarkers to classify the immune cells and their activation status. Thanks to the quantitativeness and the automation of both the experimental and analytical methods, we believe that this multiplexing approach will meet the increasing clinical need of personalized diagnostics and therapy in cancer pathology.

2.
Diagn Pathol ; 13(1): 79, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326973

RESUMO

BACKGROUND: Anaplastic lymphoma kinase (ALK) is a key oncogenic driver in lung adenocarcinoma patients and its fusion proteins are routinely assessed. The microfluidic tissue processor (MTP) device is based on a chip-confined low-volume technology allowing for rapid immunohistochemistry/immunofluorescence (IHC/IF) stainings of formalin-fixed paraffin-embedded (FFPE) or frozen tissue samples. METHODS: A novel ALK IF protocol was developed for the MTP device using the primary mouse anti-human ALK antibody clone 5A4. FFPE tumor whole sections from 14 resected lung adenocarcinoma patients documented to be ALK positive (ALK+) by automated chromogenic IHC and/or FISH were used. MTP-derived IF immunoreactivity was measured by computerized analysis of digitalized images on individual frames of tumor epithelia and surrounding stroma, using an ImageJ plug-in. RESULTS: The 5A4 antibody yielded saturated immunoreactivity at an incubation time of 4 min on a titration curve ranging from 2 to 32 min. Total staining time on the MTP device was 18 min including secondary IgG Alexa Fluor 647. MTP-based ALK IF confirmed all 12 cases; with epithelial signal above stromal staining based on computerized pixel-based measurement. MTP-IF (mean intensity levels 458 to 1301) and chromogenic IHC (H-score 120 to 300) showed an equal range of variation of 2.8 and 2.5 folds, respectively, and a trend for direct correlation (p-value 0.051). CONCLUSION: The newly developed protocol for immunofluorescent detection of ALK protein with the MTP device confirms chromogenic IHC results on FFPE lung adenocarcinoma specimens. MTP-based IF is fast and reliable. We foresee this study to be a first step opening the road for further realization of microfluidic-based assays for rapid simultaneous detection of targetable oncogenic and immune-system related markers in their topographical context to investigate tumour heterogeneity and micro-environmental interactions.


Assuntos
Adenocarcinoma de Pulmão/patologia , Quinase do Linfoma Anaplásico/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Rearranjo Gênico/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Neoplasias Pulmonares/metabolismo , Receptores Proteína Tirosina Quinases/genética , Sensibilidade e Especificidade
3.
Lab Invest ; 97(8): 983-991, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28553936

RESUMO

Frozen sections (FS) of tumor samples represent a cornerstone of pathological intraoperative consultation and have an important role in the microscopic analysis of specimens during surgery. So far, immunohistochemical (IHC) stainings on FS have been demonstrated for a few markers using manual methods. Microfluidic technologies have proven to bring substantial improvement in many fields of diagnostics, though only a few microfluidic devices have been designed to improve the performance of IHC assays. In this work, we show optimization of a complete pan-cytokeratin chromogenic immunostaining protocol on FS using a microfluidic tissue processor into a protocol taking <12 min. Our results showed specificity and low levels of background. The dimensions of the microfluidic prototype device are compatible with the space constraints of an intraoperative pathology laboratory. We therefore anticipate that the adoption of microfluidic technologies in the field of surgical pathology can significantly improve the way FSs influence surgical procedures.


Assuntos
Imuno-Histoquímica/instrumentação , Imuno-Histoquímica/métodos , Queratinas/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Mama/diagnóstico por imagem , Corantes/química , Desenho de Equipamento , Feminino , Humanos , Queratinas/análise , Queratinas/metabolismo , Masculino , Neoplasias/diagnóstico por imagem , Próstata/diagnóstico por imagem , Ureter/diagnóstico por imagem
4.
Sci Rep ; 6: 20277, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856369

RESUMO

Chromogenic immunohistochemistry (IHC) is omnipresent in cancer diagnosis, but has also been criticized for its technical limit in quantifying the level of protein expression on tissue sections, thus potentially masking clinically relevant data. Shifting from qualitative to quantitative, immunofluorescence (IF) has recently gained attention, yet the question of how precisely IF can quantify antigen expression remains unanswered, regarding in particular its technical limitations and applicability to multiple markers. Here we introduce microfluidic precision IF, which accurately quantifies the target expression level in a continuous scale based on microfluidic IF staining of standard tissue sections and low-complexity automated image analysis. We show that the level of HER2 protein expression, as continuously quantified using microfluidic precision IF in 25 breast cancer cases, including several cases with equivocal IHC result, can predict the number of HER2 gene copies as assessed by fluorescence in situ hybridization (FISH). Finally, we demonstrate that the working principle of this technology is not restricted to HER2 but can be extended to other biomarkers. We anticipate that our method has the potential of providing automated, fast and high-quality quantitative in situ biomarker data using low-cost immunofluorescence assays, as increasingly required in the era of individually tailored cancer therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Amplificação de Genes , Microfluídica/instrumentação , Microfluídica/métodos , Receptor ErbB-2/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente , Projetos Piloto , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA