Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(7): 110305, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050702

RESUMO

Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.

2.
Biotechnol J ; 18(12): e2300117, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37440460

RESUMO

Topographical factors of scaffolds play an important role in regulating cell functions. Although the effects of alignment topography and three-dimensional (3D) configuration of nanofibers as well as surface stiffness on cell behavior have been investigated, there are relatively few reports that attempt to understand the relationship between synergistic effects of these parameters and cell responses. Herein, the influence of biophysical and biomechanical cues of electrospun polyurethane (PU) scaffolds on mesenchymal stem cells (MSCs) activities was evaluated. To this aim, multiscale bundles were developed by rolling up the aligned electrospun mats mimicking the fascicles of tendons/ligaments and other similar tissues. Compared to mats, the 3D bundles not only maintained the desirable topographical features (i.e., fiber diameter, fiber orientation, and pore size), but also boosted tensile strength (∼40 MPa), tensile strain (∼260%), and surface stiffness (∼1.75 MPa). Alignment topography of nanofibers noticeably dictated cell elongation and a uniaxial orientation, resulting in tenogenic commitment of MSCs. MSCs seeded on the bundles expressed higher levels of tenogenic markers compared to mats. Moreover, the biomimetic bundle scaffolds improved synthesis of extracellular matrix components compared to mats. These results suggest that biophysical and biomechanical cues modulate cell-scaffold interactions, providing new insights into hierarchical scaffold design for further studies.


Assuntos
Nanofibras , Alicerces Teciduais , Poliuretanos , Ligamentos/fisiologia , Tendões , Engenharia Tecidual/métodos
3.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272529

RESUMO

The mechanism of pattern formation during limb muscle development remains poorly understood. The canonical view holds that naïve limb muscle progenitor cells (MPCs) invade a pre-established pattern of muscle connective tissue, thereby forming individual muscles. Here, we show that early murine embryonic limb MPCs highly accumulate pSMAD1/5/9, demonstrating active signaling of bone morphogenetic proteins (BMP) in these cells. Overexpression of inhibitory human SMAD6 (huSMAD6) in limb MPCs abrogated BMP signaling, impaired their migration and proliferation, and accelerated myogenic lineage progression. Fewer primary myofibers developed, causing an aberrant proximodistal muscle pattern. Patterning was not disturbed when huSMAD6 was overexpressed in differentiated muscle, implying that the proximodistal muscle pattern depends on BMP-mediated expansion of MPCs before their differentiation. We show that limb MPCs differentially express Hox genes, and Hox-expressing MPCs displayed active BMP signaling. huSMAD6 overexpression caused loss of HOXA11 in early limb MPCs. In conclusion, our data show that BMP signaling controls expansion of embryonic limb MPCs as a prerequisite for establishing the proximodistal muscle pattern, a process that involves expression of Hox genes.


Assuntos
Proteínas Morfogenéticas Ósseas , Músculo Esquelético , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Genes Homeobox , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteína Smad6/metabolismo
4.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005776

RESUMO

The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.


Assuntos
Proteínas Aviárias/metabolismo , Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Receptores Notch/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Proteínas de Membrana/metabolismo , Mioblastos/citologia , Transdução de Sinais
5.
Nat Commun ; 12(1): 3851, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158501

RESUMO

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Assuntos
Padronização Corporal/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Somitos/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Embrião de Galinha , Extremidades/embriologia , Fibroblastos/citologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/citologia , Somitos/embriologia
6.
ACS Biomater Sci Eng ; 7(2): 626-635, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400500

RESUMO

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads. For the two highest concentrations, threads displayed a core-shell structure with a marked fibril orientation of the outer layer along the longitudinal axis of the threads. Young's modulus and ultimate tensile stress as high as 1 and 0.3 MPa, respectively, were obtained for the most concentrated collagen threads without addition of any cross-linkers. C3H10T1/2 cells oriented themselves with a mean angle of 15-24° with respect to the longitudinal axis of the threads. Cells penetrated the 30 mg/mL scaffolds but remained on the surface of the 60 mg/mL ones. After three weeks of culture, cells displayed strong expression of the tendon differentiation marker Tnmd, especially for the 30 mg/mL threads. These results suggest that both the morphological and mechanical characteristics of collagen threads are key factors in promoting C3H10T1/2 differentiation into tenocytes, offering promising levers to optimize tissue engineering scaffolds for tendon regeneration.


Assuntos
Colágeno , Células-Tronco Mesenquimais , Diferenciação Celular , Engenharia Tecidual , Alicerces Teciduais
7.
Biointerphases ; 15(6): 061006, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203213

RESUMO

Polycaprolactone (PCL) is a widely used biodegradable polyester for tissue engineering applications when long-term degradation is preferred. In this article, we focused on the analysis of the hydrolytic degradation of virgin and bioactive poly(sodium styrene sulfonate) (pNaSS) functionalized PCL surfaces under simulated physiological conditions (phosphate buffer saline at 25 and 37 °C) for up to 120 weeks with the aim of applying bioactive PCL for ligament tissue engineering. Techniques used to characterize the bulk and surface degradation indicated that PCL was hydrolyzed by a bulk degradation mode with an accelerated degradation-three times increased rate constant-for pNaSS grafted PCL at 37 °C when compared to virgin PCL at 25 °C. The observed degradation mechanism is due to the pNaSS grafting process (oxidation and radical polymerization), which accelerated the degradation until 48 weeks, when a steady state is reached. The PCL surface was altered by pNaSS grafting, introducing hydrophilic sulfonate groups that increase the swelling and smoothing of the surface, which facilitated the degradation. After 48 weeks, pNaSS was largely removed from the surface, and the degradation of virgin and pNaSS grafted surfaces was similar. The cell response of primary fibroblast cells from sheep ligament was consistent with the surface analysis results: a better initial spreading of cells on pNaSS surfaces when compared to virgin surfaces and a tendency to become similar with degradation time. It is worthy to note that during the extended degradation process the surfaces were able to continue inducing better cell spreading and preserve their cell phenotype as shown by collagen gene expressions.


Assuntos
Poliésteres/química , Polímeros/metabolismo , Ácidos Sulfônicos/química , Animais , Soluções Tampão , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hidrólise , Polímeros/química , Polímeros/farmacologia , Ovinos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Engenharia Tecidual
8.
Sci Rep ; 10(1): 15842, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985557

RESUMO

In mice, exercise, cold exposure and fasting lead to the differentiation of inducible-brown adipocytes, called beige adipocytes, within white adipose tissue and have beneficial effects on fat burning and metabolism, through heat production. This browning process is associated with an increased expression of the key thermogenic mitochondrial uncoupling protein 1, Ucp1. Egr1 transcription factor has been described as a regulator of white and beige differentiation programs, and Egr1 depletion is associated with a spontaneous increase of subcutaneous white adipose tissue browning, in absence of external stimulation. Here, we demonstrate that Egr1 mutant mice exhibit a restrained Ucp1 expression specifically increased in subcutaneous fat, resulting in a metabolic shift to a more brown-like, oxidative metabolism, which was not observed in other fat depots. In addition, Egr1 is necessary and sufficient to promote white and alter beige adipocyte differentiation of mouse stem cells. These results suggest that modulation of Egr1 expression could represent a promising therapeutic strategy to increase energy expenditure and to restrain obesity-associated metabolic disorders.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Adipócitos Bege/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Gordura Subcutânea/fisiologia
9.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121305

RESUMO

Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.


Assuntos
Tecido Conjuntivo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Matriz Extracelular/metabolismo , Tendões/metabolismo , Animais , Tecido Conjuntivo/patologia , Fibrose , Humanos , Modelos Biológicos , Tendões/patologia
10.
Biol Open ; 9(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31941700

RESUMO

One of the main challenges relating to tendons is to understand the regulators of the tendon differentiation program. The optimum culture conditions that favor tendon cell differentiation have not been identified. Mesenchymal stem cells present the ability to differentiate into multiple lineages in cultures under different cues ranging from chemical treatment to physical constraints. We analyzed the tendon differentiation potential of C3H10T1/2 cells, a murine cell line of mesenchymal stem cells, upon different 2D- and 3D-culture conditions. We observed that C3H10T1/2 cells cultured in 2D conditions on silicone substrate were more prone to tendon differentiation, assessed with the expression of the tendon markers Scx, Col1a1 and Tnmd as compared to cells cultured on plastic substrate. The 3D-fibrin environment was more favorable for Scx and Col1a1 expression compared to 2D cultures. We also identified TGFß2 as a negative regulator of Tnmd expression in C3H10T1/2 cells in 2D and 3D cultures. Altogether, our results provide us with a better understanding of the culture conditions that promote tendon gene expression and identify mechanical and molecular parameters upon which we could act to define the optimum culture conditions that favor tenogenic differentiation in mesenchymal stem cells.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Fenômenos Mecânicos , Tendões/citologia , Tendões/fisiologia , Animais , Biomarcadores , Diferenciação Celular/genética , Células Cultivadas , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Transcriptoma
11.
Development ; 145(7)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29511024

RESUMO

Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development.


Assuntos
Diferenciação Celular/genética , Galinhas/metabolismo , Tecido Conjuntivo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Galinhas/genética , Clonagem Molecular , Extremidades , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Morfogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais , Dedos de Zinco/genética
12.
ACS Biomater Sci Eng ; 4(9): 3317-3326, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435068

RESUMO

The elaboration of biomimetic materials inspired from the specific structure of native bone is one the main goal of tissue engineering approaches. To offer the most appropriate environment for bone reconstruction, we combined electrospinning and electrospraying to elaborate an innovative scaffold composed of alternating layers of polycaprolactone (PCL) and hydroxyapatite (HA). In our approach, the electrospun PCL was shaped into a honeycomb-like structure with an inner diameter of 160 µm, capable of providing bone cells with a 3D environment while ensuring the material biomechanical strength. After 5 days of culture without any differentiation factor, the murine embryonic cell line demonstrated excellent cell viability on contact with the PCL-HA structures as well as active colonization of the scaffold. The cell differentiation, as tested by RT-qPCR, revealed a 6-fold increase in the expression of the RNA of the Bglap involved in bone mineralization as compared to a classical 2D culture. This differentiation of the cells into osteoblasts was confirmed by alkaline phosphatase staining of the scaffold cultivated with the cell lineage. Later on, organotypic cultures of embryonic bone tissues showed the high capacity of the PCL-HA honeycomb structure to guide the migration of differentiated bone cells throughout the cavities and the ridge of the biomaterial, with a colonization surface twice as big as that of the control. Taken together, our results indicate that PCL-HA honeycomb structures are biomimetic supports that promotes in vitro osteocompatibility, osteoconduction, and osteoinduction and could be suitable for being used for bone reconstruction in complex situations such as the repair of maxillofacial defects.

13.
Biol Open ; 7(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29183907

RESUMO

The sequence of the chicken genome, like several other draft genome sequences, is presently not fully covered. Gaps, contigs assigned with low confidence and uncharacterized chromosomes result in gene fragmentation and imprecise gene annotation. Transcript abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library complexity and expression normalization. In addition, the quality of the genome sequence used to map sequencing reads, and the gene annotation that defines gene features, must also be taken into account. A partially covered genome sequence causes the loss of sequencing reads from the mapping step, while an inaccurate definition of gene features induces imprecise read counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq data. Here, we describe a dual transcript-discovery approach combining a genome-guided gene prediction and a de novo transcriptome assembly. This dual approach enabled us to increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only the chicken reference annotation, contributing therefore to a more accurate estimation of transcript abundance. More generally, this strategy could be applied to any organism with partial genome sequence and/or lacking a manually-curated reference annotation in order to improve the accuracy of gene expression studies.

14.
Sci Rep ; 7(1): 17279, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222527

RESUMO

Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.


Assuntos
Quimiocina CXCL12/metabolismo , Tecido Conjuntivo/metabolismo , Extremidades/embriologia , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Vasos Sanguíneos/metabolismo , Embrião de Galinha , Fator 4 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
15.
Materials (Basel) ; 10(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207566

RESUMO

The differentiation potential of mesenchymal stem cells (MSC) has been extensively tested on electrospun scaffolds. However, this potential is often assessed with lineage-specific medium, making it difficult to interpret the real contribution of the properties of the scaffold in the cell response. In this study, we analyzed the ability of different polycaprolactone/polylactic acid PCL/PLA electrospun scaffolds (pure or blended compositions, random or aligned fibers, various fiber diameters) to drive MSC towards bone or tendon lineages in the absence of specific differentiation medium. C3H10T1/2 cells (a mesenchymal stem cell model) were cultured on scaffolds for 96 h without differentiation factors. We performed a cross-analysis of the cell-scaffold interactions (spreading, organization, and specific gene expression) with mechanical (elasticity), morphological (porosity, fibers diameter and orientation) and surface (wettability) characterizations of the electrospun fibers. We concluded that (1) osteogenic differentiation can be initiated on pure PCL-based electrospun scaffolds without specific culture conditions; (2) fiber alignment modified cell organization in the short term and (3) PLA added to PCL with an increased fiber diameter encouraged the stem cells towards the tendon lineage without additional tenogenic factors. In summary, the differentiation potential of stem cells on adapted electrospun fibers could be achieved in factor-free medium, making possible future applications in clinically relevant situations.

16.
Sci Rep ; 7(1): 16153, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170465

RESUMO

Beige adipocyte differentiation within white adipose tissue, referred to as browning, is seen as a possible mechanism for increasing energy expenditure. The molecular regulation underlying the thermogenic browning process has not been entirely elucidated. Here, we identify the zinc finger transcription factor EGR1 as a negative regulator of the beige fat program. Loss of Egr1 in mice promotes browning in the absence of external stimulation and leads to an increase of Ucp1 expression, which encodes the key thermogenic mitochondrial uncoupling protein-1. Moreover, EGR1 is recruited to the proximal region of the Ucp1 promoter in subcutaneous inguinal white adipose tissue. Transcriptomic analysis of subcutaneous inguinal white adipose tissue in the absence of Egr1 identifies the molecular signature of white adipocyte browning downstream of Egr1 deletion and highlights a concomitant increase of beige differentiation marker and a decrease in extracellular matrix gene expression. Conversely, Egr1 overexpression in mesenchymal stem cells decreases beige adipocyte differentiation, while increasing extracellular matrix production. These results reveal a role for Egr1 in blocking energy expenditure via direct Ucp1 transcription repression and highlight Egr1 as a therapeutic target for counteracting obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Hibridização In Situ , Camundongos , Camundongos Knockout
17.
Nat Commun ; 8(1): 1218, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084951

RESUMO

Fibro-adipogenic progenitors (FAPs) are an interstitial cell population in adult skeletal muscle that support muscle regeneration. During development, interstitial muscle connective tissue (MCT) cells support proper muscle patterning, however the underlying molecular mechanisms are not well understood and it remains unclear whether adult FAPs and embryonic MCT cells share a common lineage. We show here that mouse embryonic limb MCT cells expressing the transcription factor Osr1, differentiate into fibrogenic and adipogenic cells in vivo and in vitro defining an embryonic FAP-like population. Genetic lineage tracing shows that developmental Osr1+ cells give rise to a subset of adult FAPs. Loss of Osr1 function leads to a reduction of myogenic progenitor proliferation and survival resulting in limb muscle patterning defects. Transcriptome and functional analyses reveal that Osr1+ cells provide a critical pro-myogenic niche via the production of MCT specific extracellular matrix components and secreted signaling factors.


Assuntos
Embrião de Mamíferos/citologia , Extremidades/embriologia , Desenvolvimento Muscular , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Padronização Corporal , Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Camundongos , Mioblastos/metabolismo , Transdução de Sinais , Fator de Transcrição 4/metabolismo
18.
Front Cell Dev Biol ; 5: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386539

RESUMO

Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

19.
PLoS One ; 11(11): e0166237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820865

RESUMO

BACKGROUND: Tendon is a mechanical tissue that transmits forces generated by muscle to bone in order to allow body motion. The molecular pathways that sense mechanical forces during tendon formation, homeostasis and repair are not known. EGR1 is a mechanosensitive transcription factor involved in tendon formation, homeostasis and repair. We hypothesized that EGR1 senses mechanical signals to promote tendon gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Using in vitro and in vivo models, we show that the expression of Egr1 and tendon genes is downregulated in 3D-engineered tendons made of mesenchymal stem cells when tension is released as well as in tendon homeostasis and healing when mechanical signals are reduced. We further demonstrate that EGR1 overexpression prevents tendon gene downregulation in 3D-engineered tendons when tension is released. Lastly, ultrasound and microbubbles mediated EGR1 overexpression prevents the downregulation of tendon gene expression during tendon healing in reduced load conditions. CONCLUSION/SIGNIFICANCE: These results show that Egr1 expression is sensitive to mechanical signals in tendon cells. Moreover, EGR1 overexpression prevents the downregulation of tendon gene expression in the absence of mechanical signals in 3D-engineered tendons and tendon healing. These results show that EGR1 induces a transcriptional response downstream of mechanical signals in tendon cells and open new avenues to use EGR1 to promote tendon healing in reduced load conditions.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Transdução de Sinais/genética , Traumatismos dos Tendões/genética , Tendões/fisiologia , Transcrição Gênica/genética , Cicatrização/genética , Animais , Fenômenos Biomecânicos/genética , Osso e Ossos/fisiologia , Diferenciação Celular/genética , Regulação para Baixo/genética , Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/genética , Estresse Mecânico
20.
Development ; 143(20): 3839-3851, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624906

RESUMO

The molecular programme underlying tendon development has not been fully identified. Interactions with components of the musculoskeletal system are important for limb tendon formation. Limb tendons initiate their development independently of muscles; however, muscles are required for further tendon differentiation. We show that both FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are required and sufficient for SCX expression in chick undifferentiated limb cells, whereas the FGF/ERK MAPK pathway inhibits Scx expression in mouse undifferentiated limb mesodermal cells. During differentiation, muscle contraction is required to maintain SCX, TNMD and THBS2 expression in chick limbs. The activities of FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are decreased in tendons under immobilisation conditions. Application of FGF4 or TGFß2 ligands prevents SCX downregulation in immobilised limbs. TGFß2 but not FGF4 prevent TNMD and THBS2 downregulation under immobilisation conditions. We did not identify any intracellular crosstalk between both signalling pathways in their positive effect on SCX expression. Independently of each other, both FGF and TGFß promote tendon commitment of limb mesodermal cells and act downstream of mechanical forces to regulate tendon differentiation during chick limb development.


Assuntos
Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Tendões/citologia , Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Tendões/embriologia , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA