Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 111850-111870, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848791

RESUMO

Advances in agriculture include integrated methods of controlling pests, diseases, and weeds with biocontrollers, which are constantly increasing, along with herbicides. The objective is to present a systematic review of the main reports of herbicide effects on non-target organisms used in applied biological control and those naturally occurring in the ecosystems controlling pests. The categories were divided into predatory and parasitoid arthropods. Three hundred and fifty reports were analyzed, being 58.3% with parasitoids and 41.7% with predators. Lethal or sublethal effects of herbicides on reproduction, predation, genotoxicity, and abundance of biological control organisms have been reported. Two hundred and four reports of the impact of herbicides on parasitoids were analyzed. The largest number of reports was with parasitoids of the genus Trichogramma, with wide use in managing pests of the herbicide-tolerant transgenic plants. Most tests evaluating effects on parasitism, emergence, and mortality of natural enemies subjected to herbicides are with parasitoids of Lepidoptera eggs with a high diversity and use in managing these pests in different crops. Additive and synergistic effects of molecules increase the risks of herbicide mixtures. Herbicide use for weed management must integrate other control methods, as the chemical can impact natural enemies, reducing the biological control of pests.


Assuntos
Artrópodes , Herbicidas , Himenópteros , Lepidópteros , Animais , Herbicidas/farmacologia , Ecossistema , Controle Biológico de Vetores/métodos , Controle de Plantas Daninhas
2.
Plants (Basel) ; 11(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807713

RESUMO

Urochloapanicoides P. Beauv. is considered one of the most harmful weeds in the United States and Australia. It is invasive in Pakistan, Mexico, and Brazil, but its occurrence is hardly reported in China and European countries. Species distribution models enable the measurement of the impact of climate change on plant growth, allowing for risk analysis, effective management, and invasion prevention. The objective of this study was to develop current and future climate models of suitable locations for U. panicoides and to determine the most influential climatic parameters. Occurrence data and biological information on U. panicoides were collected, and climatic parameters were used to generate the Ecoclimatic Index (EI) and to perform sensitivity analysis. The future projections for 2050, 2080, and 2100 were modeled under the A2 SRES scenario using the Global Climate Model, CSIRO-Mk3.0 (CS). The potential distribution of U. panicoides coincided with the data collected, and the reliability of the final model was demonstrated. The generated model identified regions where the occurrence was favorable, despite few records of the species. Sensitivity analysis showed that the most sensitive parameters of the model were related to temperature, humidity, and cold stress. Future projections predict reductions in climate suitability for U. panicoides in Brazil, Australia, India, and Africa, and an increase in suitability in Mexico, the United States, European countries, and China. The rise in suitability of China and Europe is attributed to predicted climate change, including reduction in cold stress. From the results obtained, preventive management strategies can be formulated against the spread of U. panicoides, avoiding economic and biodiversity losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA