Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 315: 120463, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272613

RESUMO

We measured phytoplankton primary production and heterotrophic bacterial activities on microplastics and seawater in the Northwestern Mediterranean Sea during two 3-month spring periods over 2 consecutive years. Microorganisms growing on a 5 mm diameter low density polyethylene films (LDPE; 200 µm thick) faced two contrasting conditions depending on the year. Spring 2018 was characterized by consistent nutrient inputs and bloom development. In spring 2019, nutrient inputs and bloom were low. For the first time, we observed a clear coupling between primary production and heterotrophic prokaryote production on microplastics during both years, but with different intensity between years that reflected the crucial role of the trophic environmental conditions (nutrient supply) in shaping microbial activities on plastics. We found that high primary production on plastics could support the whole (net autotrophy) or the majority of the bacterial carbon demand needed for heterotrophic activities, supplemented by other carbon sources if surrounding waters are highly productive. We propose that microbial activity on plastics influences the microbial community in the surrounding seawater, especially when the environmental conditions are less favorable. An illustrative image of the role of plastics in the environment could be that of an inverter in an electrical circuit that mitigates both positive and negative variations. Our results highlight the potential role of the plastisphere in shaping biogeochemical cycles in the context of increasing amounts of plastic particles in the marine environment.


Assuntos
Microplásticos , Plásticos , Processos Heterotróficos , Água do Mar/química , Biofilmes , Bactérias , Polietileno , Processos Autotróficos , Carbono
2.
Front Microbiol ; 13: 1031439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590440

RESUMO

In order to exploit the microbes present in the environment for their beneficial resources, effective selection and isolation of microbes from environmental samples is essential. In this study, we fabricated a gel-filled microwell array device using resin for microbial culture. The device has an integrated sealing mechanism that enables high-density isolation based on the culture of microorganisms; the device is easily manageable, facilitating observation using bright-field microscopy. This low-cost device made from polymethyl methacrylate (PMMA)/polyethylene terephthalate (PET) has 900 microwells (600 µm × 600 µm × 700 µm) filled with a microbial culture gel medium in glass slide-sized plates. It also has grooves for maintaining the moisture content in the micro-gel. The partition wall between the wells has a highly hydrophobic coating to inhibit microbial migration to neighboring wells and to prevent exchange of liquid substances. After being hermetically sealed, the device can maintain moisture in the agarose gels for 7 days. In the bacterial culture experiment using this device, environmental bacteria were isolated and cultured in individual wells after 3 days. Moreover, the isolated bacteria were then picked up from wells and re-cultured. This device is effective for the first screening of microorganisms from marine environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA