Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 363: 142958, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069102

RESUMO

Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24 h after exposure. Results showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.


Assuntos
Poluentes Atmosféricos , Aeronaves , Dano ao DNA , Material Particulado , Emissões de Veículos , Material Particulado/toxicidade , Material Particulado/análise , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linhagem Celular , Macrófagos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Aerossóis/toxicidade , Aerossóis/análise , Aviação
2.
Environ Sci Technol ; 58(24): 10548-10557, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38853642

RESUMO

Concerns about civil aviation's air quality and environmental impacts have led to recent regulations on nonvolatile particulate matter (nvPM) mass and number emissions. Although these regulations do not mandate measuring particle size distribution (PSD), understanding PSDs is vital for assessing the environmental impacts of aviation nvPM. This study introduces a comprehensive data set detailing PSD characteristics of 42 engines across 19 turbofan types, ranging from unregulated small business jets to regulated large commercial aircraft. Emission tests were independently performed by using the European and Swiss reference nvPM sampling and measurement systems with parallel PSD measurements. The geometric mean diameter (GMD) at the engine exit strongly correlated with the nvPM number-to-mass ratio (N/M) and thrust, varying from 7 to 52 nm. The engine-exit geometric standard deviation ranged from 1.7 to 2.5 (mean of 2.05). The study proposes empirical correlations to predict GMD from N/M data of emissions-certified engines. These predictions are expected to be effective for conventional rich-burn engines and might be extended to novel combustor technologies if additional data become available. The findings support the refinement of emission models and help in assessing the aviation non-CO2 climate and air quality impacts.


Assuntos
Tamanho da Partícula , Material Particulado , Material Particulado/análise , Emissões de Veículos , Monitoramento Ambiental/métodos , Aviação , Poluentes Atmosféricos/análise , Poluição do Ar , Aeronaves , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA