RESUMO
BACKGROUND: Long-term outcomes of lung transplantation (LTx) remain hampered by chronic lung allograft dysfunction (CLAD). Matrix metalloproteinase 9 (MMP-9) is a secretory endopeptidase identified as a key mediator in fibrosis processes associated with CLAD. The objective of this study was to investigate whether plasma MMP9 levels may be prognostic of CLAD development. METHODS: Participants were selected from the Cohort in Lung Transplantation (COLT) for which a biocollection was associated. We considered two time points, year 1 (Y1) and year 2 (Y2) post-transplantation, for plasma MMP-9 measurements. We analysed stable recipients at those time points, comparing those who would develop a CLAD within the 2 years following the measurement to those who would remain stable 2 years after. RESULTS: MMP-9 levels at Y1 were not significantly different between the CLAD and stable groups (230 ng/ml vs. 160 ng/ml, p = 0.4). For the Y2 analysis, 129 recipients were included, of whom 50 developed CLAD within 2 years and 79 remained stable within 2 years. MMP-9 plasma median concentrations were higher in recipients who then developed CLAD than in the stable group (230 ng/ml vs. 118 ng/ml, p = 0.003). In the multivariate analysis, the Y2 MMP-9 level was independently associated with CLAD, with an average increase of 150 ng/ml (95% CI [0-253], p = 0.05) compared to that in the stable group. The Y2 ROC curve revealed a discriminating capacity of blood MMP-9 with an area under the curve of 66%. CONCLUSION: Plasmatic MMP-9 levels measured 2 years after lung transplantation have prognostic value for CLAD.
Assuntos
Transplante de Pulmão , Metaloproteinase 9 da Matriz , Humanos , Prognóstico , Aloenxertos , Transplante de Pulmão/efeitos adversos , Pulmão , Biomarcadores , Estudos RetrospectivosRESUMO
Background: Chronic lung allograft dysfunction (CLAD) is the leading cause of poor long-term survival after lung transplantation (LT). Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) aimed to predict CLAD. Methods: To predict CLAD, we investigated the clinicome of patients with LT; the exposome through assessment of airway microbiota in bronchoalveolar lavage cells and air pollution studies; the immunome with works on activation of dendritic cells, the role of T cells to promote the secretion of matrix metalloproteinase-9, and subpopulations of T and B cells; genome polymorphisms; blood transcriptome; plasma proteome studies and assessment of MSK1 expression. Results: Clinicome: the best multivariate logistic regression analysis model for early-onset CLAD in 422 LT eligible patients generated a ROC curve with an area under the curve of 0.77. Exposome: chronic exposure to air pollutants appears deleterious on lung function levels in LT recipients (LTRs), might be modified by macrolides, and increases mortality. Our findings established a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Immunome: a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and associated with a higher level of interleukin 17A; Immune cells support airway remodeling through the production of plasma MMP-9 levels, a potential predictive biomarker of CLAD. Blood CD9-expressing B cells appear to favor the maintenance of long-term stable graft function and are a potential new predictive biomarker of BOS-free survival. An early increase of blood CD4 + CD57 + ILT2+ T cells after LT may be associated with CLAD onset. Genome: Donor Club cell secretory protein G38A polymorphism is associated with a decreased risk of severe primary graft dysfunction after LT. Transcriptome: blood POU class 2 associating factor 1, T-cell leukemia/lymphoma domain, and B cell lymphocytes, were validated as predictive biomarkers of CLAD phenotypes more than 6 months before diagnosis. Proteome: blood A2MG is an independent predictor of CLAD, and MSK1 kinase overexpression is either a marker or a potential therapeutic target in CLAD. Conclusion: Systems prediction of Chronic Lung Allograft Dysfunction generated multiple fingerprints that enabled the development of predictors of CLAD. These results open the way to the integration of these fingerprints into a predictive handprint.
RESUMO
BACKGROUND: Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS: MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS: MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS: These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.
Assuntos
Bronquiolite Obliterante/enzimologia , Fibroblastos/enzimologia , Transplante de Pulmão/efeitos adversos , Pulmão/enzimologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Adolescente , Adulto , Idoso , Animais , Bronquiolite Obliterante/tratamento farmacológico , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/patologia , Proliferação de Células , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , França , Humanos , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/cirurgia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Reepitelização , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima , Adulto JovemRESUMO
Bronchiolitis obliterans syndrome is the main limitation for long-term survival after lung transplantation. Some specific B cell populations are associated with long-term graft acceptance. We aimed to monitor the B cell profile during early development of bronchiolitis obliterans syndrome after lung transplantation. The B cell longitudinal profile was analyzed in peripheral blood mononuclear cells from patients with bronchiolitis obliterans syndrome and patients who remained stable over 3 years of follow-up. CD24hi CD38hi transitional B cells were increased in stable patients only, and reached a peak 24 months after transplantation, whereas they remained unchanged in patients who developed a bronchiolitis obliterans syndrome. These CD24hi CD38hi transitional B cells specifically secrete IL-10 and express CD9. Thus, patients with a total CD9+ B cell frequency below 6.6% displayed significantly higher incidence of bronchiolitis obliterans syndrome (AUC = 0.836, PPV = 0.75, NPV = 1). These data are the first to associate IL-10-secreting CD24hi CD38hi transitional B cells expressing CD9 with better allograft outcome in lung transplant recipients. CD9-expressing B cells appear as a contributor to a favorable environment essential for the maintenance of long-term stable graft function and as a new predictive biomarker of bronchiolitis obliterans syndrome-free survival.
Assuntos
Linfócitos B/metabolismo , Biomarcadores/metabolismo , Bronquiolite Obliterante/diagnóstico , Rejeição de Enxerto/diagnóstico , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Tetraspanina 29/metabolismo , Adolescente , Adulto , Idoso , Bronquiolite Obliterante/etiologia , Estudos de Coortes , Feminino , Seguimentos , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Prognóstico , Fatores de Risco , Taxa de Sobrevida , Síndrome , Transplante Homólogo , Adulto JovemRESUMO
BACKGROUND: Chronic bronchiolitis obliterans syndrome (BOS) remains a major limitation for long-term survival after lung transplantation. The immune mechanisms involved and predictive biomarkers have yet to be identified. The purpose of this study was to determine whether peripheral blood T-lymphocyte profile could predict BOS in lung transplant recipients. METHODS: An in-depth profiling of CD4+ and CD8+ T cells was prospectively performed on blood cells from stable (STA) and BOS patients with a longitudinal follow-up. Samples were analyzed at 1 and 6 months after transplantation, at the time of BOS diagnosis, and at an intermediate time-point at 6 to 12 months before BOS diagnosis. RESULTS: Although no significant difference was found for T-cell compartments at BOS diagnosis or several months beforehand, we identified an increase in the CD4+CD25hiFoxP3+ T-cell sub-population in BOS patients at 1 and 6 months after transplantation (3.39 ± 0.40% vs 1.67 ± 0.22% in STA, p < 0.001). A CD4+CD25hiFoxP3+ T-cell threshold of 2.4% discriminated BOS and stable patients at 1 month post-transplantation. This was validated on a second set of patients at 6 months post-transplantation. Patients with a proportion of CD4+CD25hiFoxP3+ T cells up to 2.4% in the 6 months after transplantation had a 2-fold higher risk of developing BOS. CONCLUSIONS: This study is the first to report an increased proportion of circulating CD4+CD25hiFoxP3+ T cells early post-transplantation in lung recipients who proceed to develop BOS within 3 years, which supports its use as a BOS predictive biomarker.
Assuntos
Bronquiolite Obliterante/sangue , Transplante de Pulmão , Complicações Pós-Operatórias/sangue , Linfócitos T , Adolescente , Adulto , Idoso , Linfócitos T CD4-Positivos , Feminino , Seguimentos , Fatores de Transcrição Forkhead , Humanos , Subunidade alfa de Receptor de Interleucina-2 , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Síndrome , Adulto JovemRESUMO
Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function.
Assuntos
Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Metabolismo Energético , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Memória Imunológica , Transplante de Rim , Linfócitos T Reguladores/enzimologia , Tolerância ao Transplante , Difosfato de Adenosina/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Feminino , Rejeição de Enxerto/enzimologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Hidrólise , Memória Imunológica/efeitos dos fármacos , Imunossupressores/uso terapêutico , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/efeitos dos fármacos , Adulto JovemRESUMO
CD9 was recently identified as a marker of murine IL-10-competent regulatory B cells. Functional impairments or defects in CD9+ IL-10-secreting regulatory B cells are associated with enhanced asthma-like inflammation and airway hyperresponsiveness. In mouse models, all asthma-related features can be abrogated by CD9+ B cell adoptive transfer. We aimed herein to decipher the profiles, features, and molecular mechanisms of the regulatory properties of CD9+ B cells in human and mouse. The profile of CD9+ B cells was analyzed using blood from severe asthmatic patients and normal and asthmatic mice by flow cytometry. The regulatory effects of mouse CD9+ B cells on effector T cell death, cell cycle arrest, apoptosis, and mitochondrial depolarization were determined using yellow dye, propidium iodide, Annexin V, and JC-1 staining. MAPK phosphorylation was analyzed by western blotting. Patients with severe asthma and asthmatic mice both harbored less CD19+CD9+ B cells, although these cells displayed no defect in their capacity to induce T cell apoptosis. Molecular mechanisms of regulation of CD9+ B cells characterized in mouse showed that they induced effector T cell cycle arrest in sub G0/G1, leading to apoptosis in an IL-10-dependent manner. This process occurred through MAPK phosphorylation and activation of both the intrinsic and extrinsic pathways. This study characterizes the molecular mechanisms underlying the regulation of CD9+ B cells to induce effector T cell apoptosis in mice and humans via IL-10 secretion. Defects in CD9+ B cells in blood from patients with severe asthma reveal new insights into the lack of regulation of inflammation in these patients.
Assuntos
Asma/imunologia , Linfócitos B Reguladores/imunologia , Interleucina-10/metabolismo , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Animais , Apoptose/imunologia , Asma/sangue , Asma/diagnóstico , Linfócitos B Reguladores/metabolismo , Comunicação Celular/imunologia , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/imunologia , Humanos , Interleucina-10/imunologia , Pulmão , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Dinâmica Mitocondrial/imunologia , Estudos Prospectivos , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Tetraspanina 29/metabolismoRESUMO
Bronchiolitis obliterans syndrome (BOS), the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group), and 26 samples at or after BOS diagnosis (diagnosis group). An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group). We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1), T-cell leukemia/lymphoma protein 1A (TCL1A), and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01) and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.