Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(2): 2223-2237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37910304

RESUMO

Engagement in cognitive activity in adulthood is one of the factors that enable successful cognitive aging, both in humans and rodents. However, some studies emphasize that the beneficial effect on cognition of such an activity may reflect carry over from one test situation to another, including memory for procedural aspects of the behavioral tasks, and thus question whether this effect can be limited to the trained cognitive domain or whether it can be transferred to an untrained ones. In the current study, we assessed whether adulthood intermittent working memory training has beneficial effect on long-term memory of aged rats using two very different test situations. To this aim, rats trained in a delayed non-matching to position task in operant box at 3 and 15 months of age were tested in a place learning task in water maze when they were 24 months. The two tasks differ with regard to the cognitive domain but also in their spatial ability requirement and the nature of the reinforcer used. During the memory tests, accuracy of the platform search indicated age-related impairment only in the aged-untrained group. Thus, intermittent training during adult life in a task involving working memory protects aged animals from the deleterious effects of aging on spatial reference memory. This result highlights the long-term beneficial effects of training on a working memory task on an untrained cognitive domain.


Assuntos
Treino Cognitivo , Memória de Curto Prazo , Humanos , Ratos , Animais , Idoso , Memória de Longo Prazo , Memória Espacial , Transtornos da Memória/prevenção & controle
2.
Neuroscience ; 514: 56-66, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716915

RESUMO

The lateral habenula (LHb) is an epithalamic brain region viewed as a converging hub, integrating information from a large connectome and then projecting to few critical midbrain monoaminergic systems. Numerous studies have explored the roles of the LHb, notably in aversion and avoidance. An important recurring finding when manipulating the LHb is the induction of anxiety-related behaviours. However, its exact role in such behaviours remains poorly understood. In the present study, we used two pharmacological approaches altering LHb activity, intra-LHb infusion of either the GABA-A receptor agonist, Muscimol, or the glutamatergic AMPA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and exposed rats to three consecutive open field (OF) sessions. We found that both pharmacological treatments prevented rats to explore the centre of the OF, considered as the most anxiogenic part of the apparatus, across the three OF sessions. In addition, during the first, but not the two consecutive sessions, both treatments prevented a thorough exploration of the OF. Altogether, these results confirm the crucial role played by the LHb in anxiety-related behaviours and further suggest its implication in the exploration of new anxiogenic environments.


Assuntos
Habenula , Ratos , Animais , Muscimol/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia
3.
Eur J Neurosci ; 56(8): 5154-5176, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993349

RESUMO

Upon stress exposure, a broad network of structures comes into play in order to provide adequate responses and restore homeostasis. It has been known for decades that the main structures engaged during the stress response are the medial prefrontal cortex, the amygdala, the hippocampus, the hypothalamus, the monoaminergic systems (noradrenaline, dopamine and serotonin) and the periaqueductal gray. The lateral habenula (LHb) is an epithalamic structure directly connected to prefrontal cortical areas and to the amygdala, whereas it functionally interacts with the hippocampus. Also, it is a main modulator of monoaminergic systems. The LHb is activated upon exposure to basically all types of stressors, suggesting it is also involved in the stress response. However, it remains unknown if and how the LHb functionally interacts with the broad stress response network. In the current study we performed in rats a restraint stress procedure followed by immunohistochemical staining of the c-Fos protein throughout the brain. Using graph theory-based functional connectivity analyses, we confirm the principal hubs of the stress network (e.g., prefrontal cortex, amygdala and periventricular hypothalamus) and show that the LHb is engaged during stress exposure in close interaction with the medial prefrontal cortex, the lateral septum and the medial habenula. In addition, we performed DREADD-induced LHb inactivation during the same restraint paradigm in order to explore its consequences on the stress response network. This last experiment gave contrasting results as the DREADD ligand alone, clozapine-N-oxide, was able to modify the network.


Assuntos
Clozapina , Habenula , Animais , Dopamina/metabolismo , Habenula/fisiologia , Hipotálamo/metabolismo , Ligantes , Norepinefrina/metabolismo , Óxidos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Serotonina/metabolismo
4.
Neuroscience ; 498: 31-49, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35750113

RESUMO

Major Depressive Disorder (MDD) is an affective disorder typically accompanied by sleep disturbances. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) is an emerging intervention for treatment-resistant depression, but its effect on sleep has not been closely examined. Here we aimed to characterise sleep deficits in the Flinders sensitive line, an established rodent model of depression, and investigate the consequences of MFB stimulation on sleep-related phenotypes. Rats were implanted with bilateral stimulation electrodes in the MFB, surface electrodes to record electrocorticography and electromyography for sleep scoring and electrodes within the prelimbic cortex, nucleus accumbens (NAc) and dorsal hippocampus. Recordings of sleep and oscillatory activity were conducted prior to and following twenty-four hours of MFB stimulation. Behavioural anti-depressant effects were monitored using the forced swim test. Previously unreported abnormalities in the Flinders sensitive line rats were observed during slow wave sleep, including decreased circadian amplitude of its rhythm, a reduction in slow wave activity and elevated gamma band oscillations. Previously established rapid eye movement sleep deficits were replicated. MFB stimulation had anti-depressant effects on behavioural phenotype, but did not significantly impact sleep architecture; it suppressed elevated gamma activity during slow wave sleep in the electrocorticogram and prelimbic cortex signals. Diverse abnormalities in Flinders sensitive line rats emphasise slow wave sleep as a state of dysfunction in affective disorders. MFB stimulation is able to affect behaviour and sleep physiology without influencing sleep architecture. Gamma modulation may represent a component of antidepressant mechanism.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Maior , Sono de Ondas Lentas , Animais , Depressão , Feixe Prosencefálico Mediano , Núcleo Accumbens , Ratos , Roedores
5.
Brain Struct Funct ; 225(7): 2029-2044, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642914

RESUMO

Increasing evidence points to the engagement of the lateral habenula (LHb) in the selection of appropriate behavioral responses in aversive situations. However, very few data have been gathered with respect to its role in fear memory formation, especially in learning paradigms in which brain areas involved in cognitive processes like the hippocampus (HPC) and the medial prefrontal cortex (mPFC) are required. A paradigm of this sort is trace fear conditioning, in which an aversive event is preceded by a discrete stimulus, generally a tone, but without the close temporal contiguity allowing for their association based on amygdala-dependent information processing. In a first experiment, we analyzed cellular activations (c-Fos expression) induced by trace fear conditioning in subregions of the habenular complex, HPC, mPFC and amygdala using a factorial analysis to unravel functional networks through correlational analysis of data. This analysis suggested that distinct LHb subregions engaged in different aspects of conditioning, e.g. associative processes and onset of fear responses. In a second experiment, we performed chemogenetic LHb inactivation during the conditioning phase of the trace fear conditioning paradigm and subsequently assessed contextual and tone fear memories. Whereas LHb inactivation did not modify rat's behavior during conditioning, it induced contextual memory deficits and enhanced fear to the tone. These results demonstrate the involvement of the LHb in fear memory. They further suggest that the LHb is engaged in learning about threatening environments through the selection of relevant information predictive of a danger.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Habenula/metabolismo , Memória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Reação de Congelamento Cataléptica/fisiologia , Masculino , Atividade Motora/fisiologia , Córtex Pré-Frontal/metabolismo , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA