Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Thorax ; 78(6): 606-616, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793833

RESUMO

OBJECTIVE: COVID-19 severity is correlated with granulocyte macrophage colony-stimulating factor (GM-CSF) and C reactive protein (CRP) levels. In the phase three LIVE-AIR trial, lenzilumab an anti-GM-CSF monoclonal antibody, improved the likelihood of survival without ventilation (SWOV) in COVID-19, with the greatest effect in participants having baseline CRP below a median of 79 mg/L. Herein, the utility of baseline CRP to guide lenzilumab treatment was assessed. DESIGN: A subanalysis of the randomised, blinded, controlled, LIVE-AIR trial in which lenzilumab or placebo was administered on day 0 and participants were followed through Day 28. PARTICIPANTS: Hospitalised COVID-19 participants (N=520) with SpO2 ≤94% on room air or requiring supplemental oxygen but not invasive mechanical ventilation. INTERVENTIONS: Lenzilumab (1800 mg; three divided doses, q8h, within 24 hours) or placebo infusion alongside corticosteroid and remdesivir treatments. MAIN OUTCOME MEASURES: The primary endpoint was the time-to-event analysis difference in SWOV through day 28 between lenzilumab and placebo treatments, stratified by baseline CRP. RESULTS: SWOV was achieved in 152 (90%; 95% CI 85 to 94) lenzilumab and 144 (79%; 72 to 84) placebo-treated participants with baseline CRP <150 mg/L (HR: 2.54; 95% CI 1.46 to 4.41; p=0.0009) but not with CRP ≥150 mg/L (HR: 1.04; 95% CI 0.51 to 2.14; p=0.9058). A statistically significant interaction between CRP and lenzilumab treatment was observed (p=0.044). Grade ≥3 adverse events with lenzilumab were comparable to placebo in both CRP strata. No treatment-emergent serious adverse events were attributed to lenzilumab. CONCLUSION: Hospitalised hypoxemic patients with COVID-19 with baseline CRP <150 mg/L derived the greatest clinical benefit from treatment with lenzilumab. TRIAL REGISTRATION NUMBER: NCT04351152; ClinicalTrials.gov.


Assuntos
COVID-19 , Humanos , Proteína C-Reativa , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores
2.
Leukemia ; 36(6): 1635-1645, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440691

RESUMO

Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias , Citocinas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Ativação Linfocitária , Linfócitos T
3.
Lancet Respir Med ; 10(3): 237-246, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863332

RESUMO

BACKGROUND: The pathophysiology of COVID-19 includes immune-mediated hyperinflammation, which could potentially lead to respiratory failure and death. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is among cytokines that contribute to the inflammatory processes. Lenzilumab, a GM-CSF neutralising monoclonal antibody, was investigated in the LIVE-AIR trial to assess its efficacy and safety in treating COVID-19 beyond available treatments. METHODS: In LIVE-AIR, a phase 3, randomised, double-blind, placebo-controlled trial, hospitalised adult patients with COVID-19 pneumonia not requiring invasive mechanical ventilation were recruited from 29 sites in the USA and Brazil and were randomly assigned (1:1) to receive three intravenous doses of lenzilumab (600 mg per dose) or placebo delivered 8 h apart. All patients received standard supportive care, including the use of remdesivir and corticosteroids. Patients were stratified at randomisation by age and disease severity. The primary endpoint was survival without invasive mechanical ventilation to day 28 in the modified intention-to-treat population (mITT), comprising all randomised participants who received at least one dose of study drug under the documented supervision of the principal investigator or sub-investigator. Adverse events were assessed in all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT04351152, and is completed. FINDINGS: Patients were enrolled from May 5, 2020, until Jan 27, 2021. 528 patients were screened, of whom 520 were randomly assigned and included in the intention-to-treat population. 479 of these patients (n=236, lenzilumab; n=243, placebo) were included in the mITT analysis for the primary outcome. Baseline demographics were similar between groups. 311 (65%) participants were males, mean age was 61 (SD 14) years at baseline, and median C-reactive protein concentration was 79 (IQR 41-137) mg/L. Steroids were administered to 449 (94%) patients and remdesivir to 347 (72%) patients; 331 (69%) patients received both treatments. Survival without invasive mechanical ventilation to day 28 was achieved in 198 (84%; 95% CI 79-89) participants in the lenzilumab group and in 190 (78%; 72-83) patients in the placebo group, and the likelihood of survival was greater with lenzilumab than placebo (hazard ratio 1·54; 95% CI 1·02-2·32; p=0·040). 68 (27%) of 255 patients in the lenzilumab group and 84 (33%) of 257 patients in the placebo group experienced at least one adverse event that was at least grade 3 in severity based on CTCAE criteria. The most common treatment-emergent adverse events of grade 3 or higher were related to respiratory disorders (26%) and cardiac disorders (6%) and none led to death. INTERPRETATION: Lenzilumab significantly improved survival without invasive mechanical ventilation in hospitalised patients with COVID-19, with a safety profile similar to that of placebo. The added value of lenzilumab beyond other immunomodulators used to treat COVID-19 alongside steroids remains unknown. FUNDING: Humanigen.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Resultado do Tratamento
4.
medRxiv ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972949

RESUMO

BACKGROUND: Severe COVID-19 pneumonia results from a hyperinflammatory immune response (cytokine storm, CS), characterized by GM-CSF mediated activation and trafficking of myeloid cells, leading to elevation of downstream inflammatory chemokines (MCP-1, IL-8, IP-10), cytokines (IL-6, IL-1), and other markers of systemic inflammation (CRP, D-dimer, ferritin). CS leads to fever, hypotension, coagulopathy, respiratory failure, ARDS, and death. Lenzilumab is a novel Humaneered® anti-human GM-CSF monoclonal antibody that directly binds GM-CSF and prevents signaling through its receptor. The LIVE-AIR Phase 3 randomized, double-blind, placebo-controlled trial investigated the efficacy and safety of lenzilumab to assess the potential for lenzilumab to improve the likelihood of ventilator-free survival (referred to herein as survival without ventilation, SWOV), beyond standard supportive care, in hospitalized subjects with severe COVID-19. METHODS: Subjects with COVID-19 (n=520), ≥18 years, and ≤94% oxygen saturation on room air and/or requiring supplemental oxygen, but not invasive mechanical ventilation, were randomized to receive lenzilumab (600 mg, n=261) or placebo (n=259) via three intravenous infusions administered 8 hours apart. Subjects were followed through Day 28 following treatment. RESULTS: Baseline demographics were comparable between the two treatment groups: male, 64.7%; mean age, 60.5 years; mean BMI, 32.5 kg/m2; mean CRP, 98.36 mg/L; CRP was <150 mg/L in 77.9% of subjects. The most common comorbidities were obesity (55.1%), diabetes (53.4%), chronic kidney disease (14.0%), and coronary artery disease (13.6%). Subjects received steroids (93.7%), remdesivir (72.4%), or both (69.1%). Lenzilumab improved the likelihood of SWOV by 54% in the mITT population (HR: 1.54; 95%CI: 1.02-2.31, p=0.041) and by 90% in the ITT population (HR: 1.90; 1.02-3.52, nominal p=0.043) compared to placebo. SWOV also relatively improved by 92% in subjects who received both corticosteroids and remdesivir (1.92; 1.20-3.07, nominal p=0.0067); by 2.96-fold in subjects with CRP<150 mg/L and age <85 years (2.96; 1.63-5.37, nominal p=0.0003); and by 88% in subjects hospitalized ≤2 days prior to randomization (1.88; 1.13-3.12, nominal p=0.015). Survival was improved by 2.17-fold in subjects with CRP<150 mg/L and age <85 years (2.17; 1.04-4.54, nominal p=0.040). CONCLUSION: Lenzilumab significantly improved SWOV in hospitalized, hypoxic subjects with COVID-19 pneumonia over and above treatment with remdesivir and/or corticosteroids. Subjects with CRP<150 mg/L and age <85 years demonstrated an improvement in survival and had the greatest benefit from lenzilumab. NCT04351152.

5.
Mayo Clin Proc ; 95(11): 2382-2394, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33153629

RESUMO

OBJECTIVE: To assess the efficacy and safety of lenzilumab in patients with severe coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Hospitalized patients with COVID-19 pneumonia and risk factors for poor outcomes were treated with lenzilumab 600 mg intravenously for three doses through an emergency single-use investigational new drug application. Patient characteristics, clinical and laboratory outcomes, and adverse events were recorded. We also identified a cohort of patients matched to the lenzilumab patients for age, sex, and disease severity. Study dates were March 13, 2020, to June 18, 2020. All patients were followed through hospital discharge or death. RESULTS: Twelve patients were treated with lenzilumab; 27 patients comprised the matched control cohort (untreated). Clinical improvement, defined as improvement of at least 2 points on the 8-point ordinal clinical endpoints scale, was observed in 11 of 12 (91.7%) patients treated with lenzilumab and 22 of 27 (81.5%) untreated patients. The time to clinical improvement was significantly shorter for the lenzilumab-treated group compared with the untreated cohort with a median of 5 days versus 11 days (P=.006). Similarly, the proportion of patients with acute respiratory distress syndrome (oxygen saturation/fraction of inspired oxygen<315 mm Hg) was significantly reduced over time when treated with lenzilumab compared with untreated (P<.001). Significant improvement in inflammatory markers (C-reactive protein and interleukin 6) and markers of disease severity (absolute lymphocyte count) were observed in patients who received lenzilumab, but not in untreated patients. Cytokine analysis showed a reduction in inflammatory myeloid cells 2 days after lenzilumab treatment. There were no treatment-emergent adverse events attributable to lenzilumab. CONCLUSION: In high-risk COVID-19 patients with severe pneumonia, granulocyte-macrophage colony-stimulating factor neutralization with lenzilumab was safe and associated with faster improvement in clinical outcomes, including oxygenation, and greater reductions in inflammatory markers compared with a matched control cohort of patients hospitalized with severe COVID-19 pneumonia. A randomized, placebo-controlled clinical trial to validate these findings is ongoing (NCT04351152).


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , SARS-CoV-2 , Idoso , COVID-19/epidemiologia , COVID-19/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Pandemias , Resultado do Tratamento
6.
medRxiv ; 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587983

RESUMO

BACKGROUND: In COVID-19, high levels of granulocyte macrophage-colony stimulating factor (GM-CSF) and inflammatory myeloid cells correlate with disease severity, cytokine storm, and respiratory failure. With this rationale, we used lenzilumab, an anti-human GM-CSF monoclonal antibody, to treat patients with severe COVID-19 pneumonia. METHODS: Hospitalized patients with COVID-19 pneumonia and risk factors for poor outcomes were treated with lenzilumab 600 mg intravenously for three doses through an emergency single-use IND application. Patient characteristics, clinical and laboratory outcomes, and adverse events were recorded. All patients receiving lenzilumab through May 1, 2020 were included in this report. RESULTS: Twelve patients were treated with lenzilumab. Clinical improvement was observed in 11 out of 12 (92%), with a median time to discharge of 5 days. There was a significant improvement in oxygenation: The proportion of patients with SpO2/FiO2 < 315 at the end of observation was 8% vs. compared to 67% at baseline (p=0.00015). A significant improvement in mean CRP and IL-6 values on day 3 following lenzilumab administration was also observed (137.3 mg/L vs 51.2 mg/L, p = 0.040; 26.8 pg/mL vs 16.1 pg/mL, p = 0.035; respectively). Cytokine analysis showed a reduction in inflammatory myeloid cells two days after lenzilumab treatment. There were no treatment-emergent adverse events attributable to lenzilumab, and no mortality in this cohort of patients with severe COVID-19 pneumonia. CONCLUSIONS: In high-risk COVID-19 patients with severe pneumonia, GM-CSF neutralization with lenzilumab was safe and associated with improved clinical outcomes, oxygen requirement, and cytokine storm.

7.
Blood ; 136(7): 909-913, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294158
8.
Blood ; 133(7): 697-709, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30463995

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy is a new pillar in cancer therapeutics; however, its application is limited by the associated toxicities. These include cytokine release syndrome (CRS) and neurotoxicity. Although the IL-6R antagonist tocilizumab is approved for treatment of CRS, there is no approved treatment of neurotoxicity associated with CD19-targeted CAR-T (CART19) cell therapy. Recent data suggest that monocytes and macrophages contribute to the development of CRS and neurotoxicity after CAR-T cell therapy. Therefore, we investigated neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential strategy to manage CART19 cell-associated toxicities. In this study, we show that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo. Moreover, CART19 cell proliferation was enhanced and durable control of leukemic disease was maintained better in patient-derived xenografts after GM-CSF neutralization with lenzilumab. In a patient acute lymphoblastic leukemia xenograft model of CRS and neuroinflammation (NI), GM-CSF neutralization resulted in a reduction of myeloid and T cell infiltration in the central nervous system and a significant reduction in NI and prevention of CRS. Finally, we generated GM-CSF-deficient CART19 cells through CRISPR/Cas9 disruption of GM-CSF during CAR-T cell manufacturing. These GM-CSFk/o CAR-T cells maintained normal functions and had enhanced antitumor activity in vivo, as well as improved overall survival, compared with CART19 cells. Together, these studies illuminate a novel approach to abrogate NI and CRS through GM-CSF neutralization, which may potentially enhance CAR-T cell function. Phase 2 studies with lenzilumab in combination with CART19 cell therapy are planned.


Assuntos
Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Doenças do Sistema Imunitário/terapia , Inflamação/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Proliferação de Células , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Síndrome , Transplante Heterólogo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA