Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; : e31472, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445529

RESUMO

The micronutrient vitamin C is essential for the maintenance of skeletal muscle health and homeostasis. The pro-myogenic effects of vitamin C have long been attributed to its role as a general antioxidant agent, as well as its role in collagen matrix synthesis and carnitine biosynthesis. Here, we show that vitamin C also functions as an epigenetic compound, facilitating chromatin landscape transitions during myogenesis through its activity as an enzymatic cofactor for histone H3 and DNA demethylation. Utilizing C2C12 myoblast cells to investigate the epigenetic effects of vitamin C on myogenesis, we observe that treatment of cells with vitamin C decreases global H3K9 methylation and increases 5-hmC levels. Furthermore, vitamin C treatment enhances myoblast marker gene expression and myotube formation during differentiation. We identify KDM7A as a histone lysine demethylase markedly upregulated during myogenesis. Accordingly, knockdown of Kdm7a prevents the pro-myogenic effects of vitamin C. Chromatin immunoprecipitation analysis showed that KDM7A occupies the promoter region of the myogenic transcription factor MyoD1 where it facilitates histone demethylation. We also confirm that the methylcytosine dioxygenases TET1 and TET2 are required for myogenic differentiation and that their loss blunts stimulation of myogenesis by vitamin C. In conclusion, our data suggest that an epigenetic mode of action plays a major role in the myogenic effects of vitamin C.

2.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739041

RESUMO

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Via de Sinalização Wnt , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Condrogênese/efeitos dos fármacos , Linhagem Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
3.
FASEB J ; 36(2): e22153, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997955

RESUMO

DNA methylation is an epigenetic modification critical for the regulation of chromatin structure and gene expression during development and disease. The ten-eleven translocation (TET) enzyme family catalyzes the hydroxymethylation and subsequent demethylation of DNA by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Little is known about TET protein function due to a lack of pharmacological tools to manipulate DNA hydroxymethylation levels. In this study, we examined the role of TET-mediated DNA hydroxymethylation during BMP-induced C2C12 osteoblast differentiation using a novel cytosine-based selective TET enzyme inhibitor, Bobcat339 (BC339). Treatment of C2C12 cells with BC339 increased global 5mC and decreased global 5hmC without adversely affecting cell viability, proliferation, or apoptosis. Furthermore, BC339 treatment inhibited osteoblast marker gene expression and decreased alkaline phosphatase activity during differentiation. Methylated DNA immunoprecipitation and bisulfite sequencing showed that inhibition of TET with BC339 led to increased 5mC at specific CpG-rich regions at the promoter of Sp7, a key osteoblast transcription factor. Consistent with promoter 5mC marks being associated with transcriptional repression, luciferase activity of an Sp7-promoter-reporter construct was repressed by in vitro DNA methylation or BC339. Chromatin immunoprecipitation analysis confirmed that TET2 does indeed occupy the promoter region of Sp7. Accordingly, forced overexpression of SP7 rescued the inhibition of osteogenic differentiation by BC339. In conclusion, our data suggest that TET-mediated DNA demethylation of genomic regions, including the Sp7 promoter, plays a role in the initiation of osteoblast differentiation. Furthermore, BC339 is a novel pharmacological tool for the modulation of DNA methylation dynamics for research and therapeutic applications.


Assuntos
Diferenciação Celular/fisiologia , DNA/metabolismo , Osteoblastos/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Células 3T3 , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Desmetilação do DNA , Metilação de DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA