Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 12(9): 885-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237226

RESUMO

Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality, stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Separação Celular/instrumentação , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Robótica/instrumentação , Diferenciação Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos
2.
Acta Neuropathol Commun ; 2: 4, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24398250

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation, the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells, and thus was not frozen in the presence of cryoprotectants such as DMSO. RESULTS: We report the generation of iPSCs from frozen non-cryoprotected dural tissue stored at -80°C for up to 11 years. This autopsy cohort included subjects with Alzheimer's disease and four other neurodegenerative diseases. CONCLUSIONS: Disease-specific iPSCs can be generated from readily available, archival biobanked tissue. This allows for rapid expansion of generating iPSCs with confirmed pathology as well as allowing access to rare patient variants that have been banked.


Assuntos
Dura-Máter/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Doença de Alzheimer/patologia , Animais , Antígenos de Superfície/metabolismo , Diferenciação Celular , Linhagem Celular Transformada/patologia , Proliferação de Células , Bases de Dados como Assunto , Fibroblastos/metabolismo , Fibroblastos/virologia , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Proteína Homeobox Nanog , Doenças Neurodegenerativas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Mudanças Depois da Morte , Proteoglicanas/metabolismo , Pele/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo
3.
PLoS One ; 8(3): e59867, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555815

RESUMO

Current methods to derive induced pluripotent stem cell (iPSC) lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS) to isolate single cells expressing the cell surface marker signature CD13(NEG)SSEA4(POS)Tra-1-60(POS) on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral) or non- integrating (Sendai virus) reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Citometria de Fluxo , Células-Tronco Pluripotentes Induzidas/citologia , Pele/citologia , Adulto , Animais , Biópsia , Diferenciação Celular , Separação Celular , Células Cultivadas , Feminino , Humanos , Cariotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Pele/patologia , Teratoma/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA