Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 508: 75-86, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822863

RESUMO

Remediation and prevention of environmental contamination by toxic metals is an ongoing issue. Additionally, improving water filtration systems is necessary to prevent toxic metals from circulating through the water supply. Graphene oxide (GO) is a highly sorptive material for a variety of heavy metals under different ionic strength conditions over a wide pH range, making it a promising candidate for use in metal adsorption from contaminated sites or in filtration systems. We present X-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Cd (II), U(VI) and Pb(II) ions onto multi-layered graphene oxide (MLGO). This study shows that the binding environment of each metal onto the MLGO is unique, with different behaviors governing the sorption as a function of pH. For Cd sorption to MLGO, the same mechanism of electrostatic attraction between the MLGO and the Cd+2 ions surrounded by water molecules prevails over the entire pH range studied. The U(VI), present in solution as the uranyl ion, shows only subtle changes as a function of pH, likely due to the varied speciation of uranium in solution. The adsorption of the U to the MLGO is through a covalent, inner-sphere bond. The only metal from this study where the dominant adsorption mechanism to the MLGO changes with pH is Pb. In this case, under lower pH conditions, Pb is bound onto the MLGO through dominantly outer-sphere, electrostatic adsorption, while under higher pH conditions, the bonding changes to be dominated by inner-sphere, covalent adsorption. Since each of the metals in this study show unique binding properties, it is possible that MLGO could be engineered to effectively adsorb specific metal ions from solution and optimize environmental remediation or filtration for each metal.

2.
Environ Sci Technol ; 51(15): 8510-8518, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722400

RESUMO

Surface complexation models use experimental adsorption measurements to calculate stability constants that quantify the thermodynamic stability of adsorbed species. However, these constants are often poorly constrained due to nearly complete removal of the solute from solution and/or because the tested adsorbate:adsorbent ratios are not varied sufficiently. Using data sets that quantify the adsorption of U(VI) to multilayered graphene oxide (MLGO), we tested whether three different U(VI):MLGO ratios (3 ppm U; 20-210 mg L-1 MLGO) affect the ability of nonelectrostatic and diffuse layer models to predict U(VI) adsorption behaviors across a range of ionic strength (1-100 mM) and pH (2-9.5) conditions. Model formulations assumed interactions between discrete MLGO surfaces sites and the most abundant aqueous U(VI) complex(es) within a given pH range. We determined that the observed extents of U(VI) binding require adsorption of more than one U(VI) species (UO22+ and uranyl hydroxide(s) and/or carbonate(s)) and calculated the respective stability constants for the important U(VI)-MLGO surface complexes. The results also unequivocally illustrated that models using adsorption data from treatments with higher U(VI):MLGO ratios provide better fits throughout the tested range of experimental conditions, meaning that the U(VI)-MLGO stability constants calculated herein can be confidently applied to a range of natural or engineered systems.


Assuntos
Grafite , Urânio , Adsorção , Óxidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA