Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407403

RESUMO

The rapid increase in atmospheric temperature detected in the last decades in the Western Antarctic Peninsula was accompanied by a strong glacier retreat and an increase in production of melting water, as well as changes in the sea-ice dynamic. The objective of this study was to analyze the succession of micro- and mesozooplankton during a warm annual cycle (December 2010-December 2011) in an Antarctic coastal environment (Potter Cove). The biomass of zooplankton body size classes was used to predict predator-prey size relationships (i.e., to test bottom-up/top-down control effects) using a Multiple Linear Regression Analysis. The micro- and mesozooplanktonic successions were graphically analyzed to detect the influence of environmental periods (defined by the degree of glacial melting, sea-ice freezing and sea-ice melting) on coupling/uncoupling planktonic biomass curves associated to possible predator-prey size relationship scenarios. At the beginning of the glacial melting, medium and large mesozooplankton (calanoid copepods, Euphausia superba, and Salpa thompsoni) exert a top-down control on Chl-a and microzooplankton. Stratification of the water column benefitted the availability of adequate food-size (Chl-a <20) for large microzooplankton (tintinnids) development observed during fall. High abundance of omnivores mesozooplankton (Oithona similis and furcilia of E. superba) during sea-ice freezing periods would be due to the presence of available heterotrophic food under or within the sea ice. Finally, the increase in microzooplankton abundance in the middle of spring, when sea-ice melting starts, corresponded to small and medium dinoflagellates and ciliates species, which were possibly part of the biota of sea ice. If glacier retreat continues and the duration and thickness of the sea ice layer fluctuates as predicted by climate models, our results predict a future scenario regarding the zooplankton succession in Antarctic coastal environments.


Assuntos
Crustáceos , Zooplâncton/isolamento & purificação , Animais , Regiões Antárticas , Biomassa , Clima , Cadeia Alimentar , Camada de Gelo , Dinâmica Populacional , Estações do Ano
2.
Mar Pollut Bull ; 95(1): 305-14, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25837775

RESUMO

Quantifying biotic feedbacks in response to environmental signals is fundamental to assess ecosystem perturbation. We analyzed the joint effects of eutrophication, derived from sewage pollution, and climate at the base of the pelagic food web in the Bahía Blanca Estuary (SW Atlantic Ocean). A two-year survey of environmental conditions and microplankton communities was conducted in two sites affected by contrasting anthropogenic eutrophication conditions. Under severe eutrophication, we found higher phytoplankton abundance consistently dominated by smaller sized, non siliceous species, while microzooplankton abundance remained lower and nutrient stoichiometry showed conspicuous deviations from the Redfield ratio. Phytoplankton growth in such conditions appeared controlled by phosphorous. In turn, microplankton biomass and phytoplankton size ratio (<20µm:>20µm) displayed a saturation relationship with nutrients in the highly eutrophic area, although mean phytoplankton growth was similar in both eutrophic systems. The strength of links within the estuarine network, quantified through path analysis, showed enhanced relationships under larger anthropogenic eutrophication, which fostered the climate influence on microplankton communities. Our results show conspicuous effects of severe sewage pollution on the ecological stoichiometry, i.e., N and P excess with respect to Si, altering nutrient ratios for microplankton communities. This warns on wide consequences on food web dynamics and ultimately in ecosystem assets of coastal pelagic environments.


Assuntos
Ecossistema , Estuários , Eutrofização , Plâncton , Esgotos , Poluição da Água , Argentina , Oceano Atlântico , Biomassa , Clima , Cadeia Alimentar , Fósforo , Fitoplâncton/crescimento & desenvolvimento
3.
Environ Monit Assess ; 186(12): 8629-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25204897

RESUMO

This study focused on the seasonal and spatial analysis of the mesozooplankton community in a human-impacted subantarctic bay in Argentina and aimed to detect assemblages associated with environmental variability. Mesozooplankton samples and environmental data were obtained in the Ushuaia Bay (UB) seasonally, from August 2004 to June 2005, and spatially, from coastal (more polluted), middle (less influenced) and open sea water (free polluted) sampling stations. Remarkable seasonal changes on the mesozooplankton community were observed. Nitrogenated nutrients, chlorophyll a, salinity and temperature were the prevailing environmental conditions likely associated with the different mesozooplankton assemblages found in the bay. The copepods Eurytemora americana, Acartia tonsa, Podon leuckarti and Nematoda were particularly observed on the northwest coast of the bay, characterized by the highest level of urban pollution, eutrophicated by sewage and freshwater inputs from the Encerrada Bay which is connected to it. The stations situated in the northeast area, mostly influenced by freshwater input from rivers and glacier melting, showed low mesozooplankton abundances and an important contribution of adventitious plankton. The copepods Ctenocalanus citer, Clausocalanus brevipes and Drepanopus forcipatus were mostly observed at the stations located near the Beagle Channel, characterized by open sea and free polluted waters. Our findings suggest that the variations observed in the mesozooplankton assemblages in the UB seem to be modulated by environmental variables associated with the anthropogenic influence, clearly detected on the coast of the bay. Certain opportunistic species such as A. tonsa and E. americana could be postulated as potential bioindicators of water quality in subantarctic coastal ecosystems.


Assuntos
Monitoramento Ambiental , Plâncton/classificação , Animais , Argentina , Baías/química , Clorofila/análise , Clorofila A , Copépodes , Ecossistema , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Água do Mar , Águas Residuárias/análise , Poluentes da Água/análise , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA