Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Front Mol Biosci ; 9: 997295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213121

RESUMO

New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.

2.
J Phys Chem B ; 126(41): 8177-8187, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36219580

RESUMO

Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.


Assuntos
Heme , Proteínas , Oxirredução , Heme/química , Proteínas/química , Oxirredutases/química , Tetrapirróis , Ferro
3.
Nat Commun ; 13(1): 4937, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999239

RESUMO

Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here, we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.


Assuntos
Fotossíntese , Energia Solar , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Luz Solar
4.
Biochim Biophys Acta Bioenerg ; 1863(6): 148558, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413248

RESUMO

Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.


Assuntos
Naftoquinonas , Quinonas , Eletroquímica , Transporte de Elétrons , Prótons , Quinonas/química
5.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672948

RESUMO

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Assuntos
Peptídeos/química , Proteínas/química , Temperatura , Estrutura Molecular , Estabilidade Proteica , Semicondutores , Análise Espectral , Xantofilas/química
6.
Phys Chem Chem Phys ; 21(25): 13453-13461, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187821

RESUMO

Radical pair formation and decay are implicated in a wide range of biological processes including avian magnetoreception. However, studying such biological radical pairs is complicated by both the complexity and relative fragility of natural systems. To resolve open questions about how natural flavin-amino acid radical pair systems are engineered, and to create new systems with novel properties, we developed a stable and highly adaptable de novo artificial protein system. These protein maquettes are designed with intentional simplicity and transparency to tolerate aggressive manipulations that are impractical or impossible in natural proteins. Here we characterize the ultrafast dynamics of a series of maquettes with differing electron-transfer distance between a covalently ligated flavin and a tryptophan in an environment free of other potential radical centers. We resolve the spectral signatures of the cysteine-ligated flavin singlet and triplet states and reveal the picosecond formation and recombination of singlet-born radical pairs. Magnetic field-sensitive triplet-born radical pair formation and recombination occurs at longer timescales. These results suggest that both triplet- and singlet-born radical pairs could be exploited as biological magnetic sensors.


Assuntos
Flavinas/química , Proteínas/química , Triptofano/química , Cisteína/química , Transporte de Elétrons , Radicais Livres/química , Cinética , Campos Magnéticos , Modelos Moleculares , Oxirredução
7.
Biochemistry ; 57(49): 6752-6756, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30468389

RESUMO

We report the rational construction of de novo-designed biliverdin-binding proteins by first principles of protein design, informed by energy minimization modeling in Rosetta. The self-assembling tetrahelical bundles bind biliverdin IXa (BV) cofactor autocatalytically in vitro, like photosensory proteins that bind BV (and related bilins or linear tetrapyrroles) despite lacking sequence and structural homology to the natural counterparts. Upon identification of a suitable site for ligation of the cofactor to the protein scaffold, stepwise placement of residues stabilized BV within the hydrophobic core. Rosetta modeling was used in the absence of a high-resolution structure to inform the structure-function relationships of the cofactor binding pocket. Holoprotein formation stabilized BV, resulting in increased far-red BV fluorescence. Via removal of segments extraneous to cofactor stabilization or bundle stability, the initial 15 kDa de novo-designed fluorescence-activating protein was truncated without any change to its optical properties, down to a miniature 10 kDa "mini", in which the protein scaffold extends only a half-heptad repeat beyond the hypothetical position of the bilin D-ring. This work demonstrates how highly compact holoprotein fluorochromes can be rationally constructed using de novo protein design technology and natural cofactors.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Evolução Molecular Direcionada , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Engenharia de Proteínas , Estabilidade Proteica , Biologia Sintética
8.
Pharm Stat ; 17(6): 761-769, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30112838

RESUMO

Mechanistic understanding of cancers and their potential interactions with molecularly targeted agents is driving the need for stratified medicine to ensure each participant receives the best possible care. This understanding, backed by scientific research, should be used to guide the design of clinical trials for these agents. The mechanism of action of a molecularly targeted agent often suggests that a biomarker can be used as a predictor of activity of the agent on the targeted disease. A biomarker driven trial is needed to confirm that the molecularly targeted agent stratifies the participant population with disease into high and low responder groups. We assume that the biomarker of interest can be dichotomised and propose a balanced parallel two-stage single-arm phase II trial that builds on existing two-stage single-arm designs. A single-arm trial cannot distinguish between a marker being predictive in the population as a whole and the agent causing an increased response in the marker positive group, but it is a first step. We compare this approach to the existing single-arm approaches, sequential enrichment, tandem two-stage, and parallel two-stage designs, and discuss the advantages and disadvantages of each design. We show that our design compares favourably to existing designs in the Bayesian framework, making a more efficient use of collected data. We recommend using the parallel two-stage balanced or sequential enrichment designs when randomisation is not practical in a phase II trial.


Assuntos
Ensaios Clínicos Fase II como Assunto , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Projetos de Pesquisa , Teorema de Bayes , Biomarcadores , Humanos
9.
Nanoscale ; 10(27): 13064-13073, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29956712

RESUMO

In strong plasmon-exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light-matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupled to synthetic light-harvesting maquette proteins, and that the coupling can be controlled via alteration of the protein structure. For maquettes with a single chlorin binding site, the exciton energy (2.06 ± 0.07 eV) is close to the expected energy of the Qy transition. However, for maquettes containing two chlorin binding sites that are collinear in the field direction, an exciton energy of 2.20 ± 0.01 eV is obtained, intermediate between the energies of the Qx and Qy transitions of the chlorin. This observation is attributed to strong coupling of the LSPR to an H-dimer state not observed under weak coupling.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Dispositivos Ópticos , Teoria Quântica , Modelos Químicos , Porfirinas , Pontos Quânticos , Ressonância de Plasmônio de Superfície
10.
J Am Chem Soc ; 140(28): 8705-8713, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29940116

RESUMO

It is a remarkable fact that ∼50 µT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.


Assuntos
Proteínas Aviárias/metabolismo , Aves/metabolismo , Criptocromos/metabolismo , Radicais Livres/metabolismo , Animais , Proteínas Aviárias/química , Criptocromos/química , Transporte de Elétrons , Radicais Livres/química , Luz , Campos Magnéticos , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica em alfa-Hélice
11.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618529

RESUMO

Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.


Assuntos
Transferência de Energia , Ficobiliproteínas/química , Materiais Biomiméticos , Metabolismo Energético , Modelos Moleculares , Fotossíntese/fisiologia , Ficobiliproteínas/fisiologia , Engenharia de Proteínas , Dobramento de Proteína
12.
J Biol Chem ; 293(18): 6672-6681, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559557

RESUMO

Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo-designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b-induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Hemeproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dicroísmo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Proteínas de Membrana Transportadoras/química , Metilaminas/metabolismo , Modelos Moleculares , Oxirredutases N-Desmetilantes/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Estabilidade Proteica , Transporte Proteico , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Temperatura
13.
Stat Methods Med Res ; 27(5): 1451-1463, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-27587590

RESUMO

Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.


Assuntos
Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase II como Assunto/métodos , Interpretação Estatística de Dados , Imidazóis/uso terapêutico , Pirazinas/uso terapêutico , Doenças Raras/terapia , Sarcoma de Ewing/tratamento farmacológico , Teorema de Bayes , Humanos , Modelos Estatísticos , Seleção de Pacientes , Probabilidade , Tamanho da Amostra , Resultado do Tratamento
14.
Chem Sci ; 8(1): 316-324, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28261441

RESUMO

Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistry of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. This partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.

15.
J R Soc Interface ; 14(127)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28179548

RESUMO

Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.


Assuntos
Proteínas de Bactérias/química , Ficocianina/química , Porfirinas/química , Synechocystis/química , Proteínas de Bactérias/genética , Ficocianina/genética , Porfirinas/genética , Synechocystis/genética
16.
J Am Chem Soc ; 138(51): 16584-16587, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27958724

RESUMO

Migratory birds use the Earth's magnetic field as a source of navigational information. This light-dependent magnetic compass is thought to be mediated by cryptochrome proteins in the retina. Upon light activation, electron transfer between the flavin adenine dinucleotide cofactor and tryptophan residues leads to the formation of a spin-correlated radical pair, whose subsequent fate is sensitive to external magnetic fields. To learn more about the functional requirements of this complex chemical compass, we have created a family of simplified, adaptable proteins-maquettes-that contain a single tryptophan residue at different distances from a covalently bound flavin. Despite the complete absence of structural resemblance to the native cryptochrome fold or sequence, the maquettes exhibit a strong magnetic field effect that rivals those observed in the natural proteins in vitro. These novel maquette designs offer unprecedented flexibility to explore the basic requirements for magnetic sensing in a protein environment.


Assuntos
Flavoproteínas/genética , Flavoproteínas/metabolismo , Campos Magnéticos , Engenharia de Proteínas , Flavoproteínas/química , Conformação Proteica em alfa-Hélice
17.
Nano Lett ; 16(11): 6850-6856, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27689237

RESUMO

Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon-exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed for self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon-exciton coupling is sensitive to the specific presentation of the pigment molecules.

18.
Methods Enzymol ; 580: 365-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27586341

RESUMO

Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways.


Assuntos
Aminoácidos/química , Heme/química , Engenharia de Proteínas/métodos , Proteínas/química , Elétrons , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína , Proteínas/síntese química , Tetrapirróis/química
19.
Biochim Biophys Acta ; 1857(5): 513-521, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26423266

RESUMO

Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Citocromos c/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Citocromos c/genética , Citocromos c/metabolismo , Difusão , Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Fotólise , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
20.
Biochim Biophys Acta ; 1857(5): 503-512, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26672896

RESUMO

Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Metabolismo Energético , Proteínas de Membrana/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Escherichia coli , Heme/química , Heme/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fotossíntese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA