Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geoderma ; 3822021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162565

RESUMO

Rice is the primary crop in Bangladesh and rice yield is diminished due to the buildup of arsenic (As) in soil from irrigation with high-As groundwater. Soil testing with an inexpensive kit could help farmers target high-As soil for mitigation or decide to switch to a different crop that is less sensitive to As in soil. A total of 3,240 field kit measurements of As in 0.5 g of fresh soil added to 50 mL of water were compared with total soil As concentrations measured on oven-dried homogenized soil by X-ray fluorescence (XRF). For sets of 12 soil samples collected within a series of rice fields, the average of kit As measurements was a linear function of the average of XRF measurements (r2=0.69). Taking into account that the kit overestimates water As concentrations by about a factor of two, the relationship suggests that about a quarter of the As in paddy soil is released in the kit's reaction vessel. Using the relationship and considering XRF measurements as the reference, the 12-sample average determined correctly whether soil As was above or below a 30 mg/kg threshold in 86% of cases where soil As was above the threshold and in 79% of cases where soil As was below the threshold. We also used a Bayesian approach using 12 kit measurements to estimate the probability that soil As was above a given threshold indicated by XRF measurements. The Bayesian approach is theoretically optimal but was only slightly more accurate than the linear regression. These results show that rice farmers can identify high-As portions of their fields for mitigation using a dozen field kit measurements on fresh soil and base their decisions on this information.

2.
Environ Sci Technol ; 53(7): 3410-3418, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30816703

RESUMO

Rice is the primary crop in Bangladesh, and rice yield is diminished due to the buildup of arsenic (As) in soil from irrigation with high-As groundwater. Implementing a soil inversion, where deeper low-As soil is exchanged with the surface high-As soil in contact with rice roots, may mitigate the negative impacts of As on yield. We compared soil As, soil nutrients, and rice yield in control plots with those in adjacent soil inversion plots. We also estimated the quantity of soil As deposited on a yearly basis via irrigation water, to explore the longevity of a soil inversion to reduce surface As. Soil As, organic carbon, nitrogen, and phosphorus concentrations decreased by about 40% in response to the inversion and remained lowered over four seasons of monitoring. Inversion plot yields increased above control plot yields by 15-30% after a one-season lag despite the recovering but still reduced nutrient levels. Farmers have started conducting soil inversions of their own volition, typically close to where irrigation water enters the field. However, the yield gain will be limited to a few decades at most due to deposition of As via well water, unless the field is irrigated with low-As river or pond water.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Poluentes Químicos da Água , Bangladesh , Monitoramento Ambiental , Solo
3.
Environ Sci Technol ; 51(20): 11553-11560, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28929748

RESUMO

Rice was traditionally grown only during the summer (aman) monsoon in Bangladesh but more than half is now grown during the dry winter (boro) season and requires irrigation. A previous field study conducted in a small area irrigated by a single high-arsenic well has shown that the accumulation of arsenic (As) in soil from irrigating with high-As groundwater can reduce rice yield. We investigated the effect of soil As on rice yield under a range of field conditions by exchanging the top 15 cm of soil between 13 high-As and 13 low-As plots managed by 16 different farmers, and we explore the implications for mitigation. Soil As and rice yields were measured for soil replacement plots where the soil was exchanged and adjacent control plots where the soil was not exchanged. Differences in yield (ranging from +2 to -2 t/ha) were negatively correlated to the differences in soil As (ranging from -9 to +19 mg/kg) between adjacent replacement and control plots during two boro seasons. The relationship between soil As and yield suggests a boro rice yield loss over the entire country of 1.4-4.9 million tons annually, or 7-26% of the annual boro harvest, due to the accumulation of As in soil over the past 25 years.


Assuntos
Arsênio , Monitoramento Ambiental , Poluentes do Solo , Bangladesh , Contaminação de Alimentos , Oryza , Solo , Poluentes Químicos da Água
4.
J Nematol ; 44(3): 274-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23481227

RESUMO

Root-knot nematode (Meloidogyne graminicola), an important and widespread pathogen, causes high yield losses in rice with limited information on wheat and on efficient management. Absence of uniform screening protocols is contributing to slow progress of host resistance development. To develop an efficient screening protocol, several greenhouse studies were conducted, and effects of incubation period, inoculum level, inoculation method, seedling age, and their interactions on root-galling severity (RGS) ratings and reproductive factor (RF) values of M. graminicola were determined. At 2 eggs/cm(3) soil, significantly lower RGS but higher RF values were observed at 60 days than at 45 days of incubation. Meloidogyne graminicola reproduced six times more on rice than on wheat where the RGS index in both crops increased steadily with increasing inoculum levels, but RF increased at lower levels and decreased beyond a maximum at medium inoculum levels. Inoculum level, container size, seedling age, inoculation method, and their interactions impacted nematode infection and reproduction. The protocol was verified on eleven rice germplasm lines and seven wheat cultivars using the resistance index (RI) calculated from RGS and RF, to screen rice and wheat germplasm.

5.
Sci Total Environ ; 412-413: 324-35, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22055452

RESUMO

Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020.


Assuntos
Arsênio/análise , Oryza/metabolismo , Medição de Risco/métodos , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Irrigação Agrícola , Agricultura , Bangladesh , Meio Ambiente , Monitoramento Ambiental , Água Subterrânea/análise , Ferro/análise , Oryza/crescimento & desenvolvimento , Análise de Regressão , Solo/análise , Espectrofotometria Atômica , Fatores de Tempo
7.
Environ Sci Technol ; 42(10): 3861-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18546735

RESUMO

Rice is a potentially important route of human exposure to arsenic, especially in populations with rice-based diets. However, arsenic toxicity varies greatly with species. The initial purpose of the present study was to evaluate arsenic speciation in U.S. rice. Twenty-four samples containing high levels of arsenic and produced in different regions of the U.S were selected from a previous market-basket survey. Arsenite and dimethyl arsinic acid (DMA) were the major species detected. DMA increased linearly with increasing total As but arsenite remained fairly constant at approximately 0.1 mg kg(-1), showing that rice high in As was dominated by DMA. A similar result was obtained when our data was combined with other published speciation studies for U.S. rice. However, when all published speciation data for rice was analyzed a second population dominated by inorganic As and lower levels of DMA was found. We thus categorized rice into DMA and Inorganic As types. Rice from the U.S. was predominantly the DMA type, as were single samples from Australia and China, whereas rice from Asia and Europe was the Inorganic As type. We suggest that methylation of As occurs within rice and that genetic differences lead to the two rice types. Insufficient understanding of DMA toxicity precludes a firm assessment of the relative health risks associated with the two rice types but, based on current knowledge, we suggest that the DMA rice type is likely to be less of a health risk than the Inorganic As rice type and, on this basis, rice from the U.S. may be safer than rice from Asia and Europe.


Assuntos
Arsênio/análise , Exposição Ambiental , Oryza/química , Humanos , Controle de Qualidade , Estados Unidos
8.
Environ Sci Technol ; 42(10): 3856-60, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18546734

RESUMO

High levels of arsenic (As) in rice grain are a potential concern for human health. Variability in total As in rice was evaluated using 204 commercial rice samples purchased mostly in retail stores in upstate New York and supplemented with samples from Canada, France, Venezuela, and other countries. Total As concentration in rice varied from 0.005 to 0.710 mg kg(-1). We combined our data set with literature values to derive a global "normal" range of 0.08-0.20 mg kg(-1) for As concentration in rice. The mean As concentrations for rice from the U.S. and Europe (both 0.198 mg kg(-1)) were statistically similar and significantly higher than rice from Asia (0.07 mg kg(-1)). Using two large data sets from Bangladesh, we showed that As contaminated irrigation water, but not soil, led to increased grain As concentration. Wide variability found in U.S. rice grain was primarily influenced by region of growth rather than commercial type, with rice grown in Texas and Arkansas having significantly higher mean As concentrations than that from California (0.258 and 0.190 versus 0.133 mg kg(-1)). Rice from one Texas distributor was especially high, with 75% of the samples above the global "normal" range, suggesting production in an As contaminated environment.


Assuntos
Arsênio/análise , Oryza/química , Poluentes do Solo/análise , Análise Espectral/métodos
9.
J Nematol ; 39(3): 221-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19259491

RESUMO

Thirty-three isolates of root-knot nematode were recovered from soil samples from rice-wheat fields in Nepal and maintained on rice cv. BR 11. The isolates were characterized using morphology, host range and DNA sequence analyses in order to ascertain their identity. Results indicated phenotypic similarity (juvenile measurements, perennial pattern, host range and gall shape) of the Nepalese isolates with Meloidogyne graminicola, with minor variations. The rice varieties LA 110 and Labelle were susceptible to all of the Nepalese isolates, but differences in the aggressiveness of the isolates were observed. Phylogenetic analyses based on the sequences of partial internal transcribed spacer (ITS) of the rRNA genes indicated that all Nepalese isolates formed a distinct clade with known isolates of M. graminicola with high bootstrap support. Furthermore, two groups were identified within the M. graminicola clade. No correlation between ITS haplotype and aggressiveness or host range was found among the tested isolates.

10.
Environ Sci Technol ; 36(17): 3683-9, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12322738

RESUMO

Peat deposits can concentrate chalcophilic metals such as Zn and Cd by biogeochemical processes; as a result, there is a possibility that the solubility, mobility, and bioavailability of these metals could increase when such deposits are drained and cropped, initiating oxidation of organic matter and sulfides under aerobic conditions. We use spectroscopic, chemical, and bioassay approaches to characterize high Zn (88-15,800 mg kg(-1)), Cd (0.55-83.0 mg kg(-1)), and S (3.52-9.54 g kg(-1)) peat soils collected from locations in New York State and Ontario that overlie Silurian-age metal-enriched dolomite bedrock. Total and KNO3-extractable trace metals were determined by ICP emission spectrometry, and labile Cd and Zn were measured in the KNO3 extracts by anodic stripping voltammetry. A greenhouse bioassay with maize and canola was conducted to determine the bioavailability and toxicity of the soil Zn and Cd. The electronic oxidation states of sulfur in the peat soils were determined by X-ray absorption near edge spectroscopy (XANES) and Zn and S distribution in soil particles by energy-dispersive X-ray absorption (EDX) spectroscopy. Sulfur-XANES analyses show that a high percentage (35-45%) of the total soil S exists in the most reduced electronic oxidation states (such as sulfides and thiols), while <5% exists in the most oxidized forms (such as sulfate). EDX analyses indicate a microscopic elemental association between Zn and S in these soils. Despite the EDX evidence of close association between Zn and S in soil particles, conventional X-ray diffraction analyses of the bulk soils did not detect a mineral phase of sphalerite (ZnS) in any of the soils. The distribution coefficients (Kd) for Zn and Cd increased with soil pH and indicated stronger Cd retention than Zn in the peats. The results of the bioassaytests showed that most of the high-Zn soils were very phytotoxic, with plant shoot Zn levels exceeding 400 mg kg(-1). Conversely, Cd concentrations in the plant shoots were generally below 2 mg kg(-1), showing a tendency toward low Cd phytoavailability relative to Zn. The information gained from the spectroscopic analyses (S-XANES and EDX) was used to explain the macroscopic observations (Cd and Zn Kd values and phytoavailability data) in these peat soils; we conclude that sulfur biogeochemical cycling may play an important role in Zn and Cd retention in these organic soils.


Assuntos
Brassica napus/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Enxofre/análise , Zea mays/metabolismo , Zinco/análise , Disponibilidade Biológica , Cádmio/química , Cádmio/farmacocinética , Concentração de Íons de Hidrogênio , New York , Ontário , Oxirredução , Brotos de Planta/metabolismo , Poluentes do Solo/farmacocinética , Solubilidade , Espectrometria por Raios X , Enxofre/química , Enxofre/farmacocinética , Zinco/química , Zinco/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA