Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531855

RESUMO

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Assuntos
Pseudomonas putida , Xilose , Xilose/metabolismo , Pseudomonas putida/genética , Transaldolase/genética , Engenharia Metabólica , Via de Pentose Fosfato
2.
Klin Padiatr ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320582

RESUMO

BACKGROUND: Several previous studies have reported a more severe course of nephrotic syndrome in children with low birth weight. PATIENTS: Cohort of 223 children with idiopathic nephrotic syndrome. METHODS: We aimed to investigate the association between course of nephrotic syndrome and low birth weight. Data from seven paediatric nephrology centres were used. RESULTS: Children with low birth weight had 3.84 times higher odds for a more severe course of steroid-sensitive nephrotic syndrome (95% CI 1.20-17.22, P=0.041), and those with low birth weight and remission after 7 days had much higher odds for a more severe course of disease (OR 8.7). Low birth weight children had a longer time to remission (median 12 vs. 10 days, P=0.03). They had a higher need for steroid-sparing agents (OR for the same sex=3.26 [95% CI 1.17-11.62, P=0.039]), and the odds were even higher in females with low birth weight (OR 6.81). There was no evidence of an association either between low birth weight and focal segmental glomerulosclerosis or between low birth weight and steroid-resistant nephrotic syndrome. DISCUSSION: We conducted the first multicentric study confirming the worse outcomes of children with NS and LBW and we found additional risk factors. CONCLUSIONS: Low birth weight is associated with a more severe course of steroid-sensitive nephrotic syndrome, while being female and achieving remission after 7 days are additional risk factors.

3.
Int J Radiat Oncol Biol Phys ; 118(2): 533-542, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652302

RESUMO

PURPOSE: The optimal motion management strategy for patients receiving stereotactic arrhythmia radioablation (STAR) for the treatment of ventricular tachycardia (VT) is not fully known. We developed a framework using a digital phantom to simulate cardiorespiratory motion in combination with different motion management strategies to gain insight into the effect of cardiorespiratory motion on STAR. METHODS AND MATERIALS: The 4-dimensional (4D) extended cardiac-torso (XCAT) phantom was expanded with the 17-segment left ventricular (LV) model, which allowed placement of STAR targets in standardized ventricular regions. Cardiac- and respiratory-binned 4D computed tomography (CT) scans were simulated for free-breathing, reduced free-breathing, respiratory-gating, and breath-hold scenarios. Respiratory motion of the heart was set to population-averaged values of patients with VT: 6, 2, and 1 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction was adjusted by reducing LV ejection fraction to 35%. Target displacement was evaluated for all segments using envelopes encompassing the cardiorespiratory motion. Envelopes incorporating only the diastole plus respiratory motion were created to simulate the scenario where cardiac motion is not fully captured on 4D respiratory CT scans used for radiation therapy planning. RESULTS: The average volume of the 17 segments was 6 cm3 (1-9 cm3). Cardiac contraction-relaxation resulted in maximum segment (centroid) motion of 4, 6, and 3.5 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction-relaxation resulted in a motion envelope increase of 49% (24%-79%) compared with individual segment volumes, whereas envelopes increased by 126% (79%-167%) if respiratory motion also was considered. Envelopes incorporating only the diastole and respiration motion covered on average 68% to 75% of the motion envelope. CONCLUSIONS: The developed LV-segmental XCAT framework showed that free-wall regions display the most cardiorespiratory displacement. Our framework supports the optimization of STAR by evaluating the effect of (cardio)respiratory motion and motion management strategies for patients with VT.


Assuntos
Coração , Respiração , Humanos , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos da radiação , Movimento (Física) , Tomografia Computadorizada Quadridimensional , Arritmias Cardíacas , Imagens de Fantasmas
4.
Comput Struct Biotechnol J ; 21: 5372-5381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965057

RESUMO

Polyhydroxyalkanoates (PHAs) have emerged as an environmentally friendly alternative to conventional polyesters. In this study, we present a comprehensive analysis of the genomic and phenotypic characteristics of three non-model thermophilic bacteria known for their ability to produce PHAs: Schlegelella aquatica LMG 23380T, Caldimonas thermodepolymerans DSM 15264, and C. thermodepolymerans LMG 21645 and the results were compared with the type strain C. thermodepolymerans DSM 15344T. We have assembled the first complete genomes of these three bacteria and performed the structural and functional annotation. This analysis has provided valuable insights into the biosynthesis of PHAs and has allowed us to propose a comprehensive scheme of carbohydrate metabolism in the studied bacteria. Through phylogenomic analysis, we have confirmed the synonymity between Caldimonas and Schlegelella genera, and further demonstrated that S. aquatica and S. koreensis, currently classified as orphan species, belong to the Caldimonas genus.

5.
Cancer Cell Int ; 23(1): 295, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008721

RESUMO

BACKGROUND: Colorectal cancer is a highly prevalent and deadly. The most common metastatic site is the liver. We performed a whole exome sequencing analysis of a series of metachronous colorectal cancer liver metastases (mCLM) and matched non-malignant liver tissues to investigate the genomic profile of mCLM and explore associations with the patients' prognosis and therapeutic modalities. METHODS: DNA samples from mCLM and non-malignant liver tissue pairs (n = 41) were sequenced using whole exome target enrichment and their germline and somatic genetic variability, copy number variations, and mutational signatures were assessed for associations with relapse-free (RFS) and overall survival (OS). RESULTS: Our genetic analysis could stratify all patients into existing targeted therapeutic regimens. The most commonly mutated genes in mCLM were TP53, APC, and KRAS together with PIK3CA and several passenger genes like ABCA13, FAT4, PCLO, and UNC80. Patients with somatic alterations in genes from homologous recombination repair, Notch, and Hedgehog pathways had significantly prolonged RFS, while those with altered MYC pathway genes had poor RFS. Additionally, alterations in the JAK-STAT pathway were prognostic of longer OS. Patients bearing somatic variants in VIPR2 had significantly shorter OS and those with alterations in MUC16 prolonged OS. Carriage of the KRAS-12D variant was associated with shortened survival in our and external datasets. On the other hand, tumor mutation burden, mismatch repair deficiency, microsatellite instability, mutational signatures, or copy number variation in mCLM had no prognostic value. CONCLUSIONS: The results encourage further molecular profiling for personalized treatment of colorectal cancer liver metastases discerning metachronous from synchronous scenarios.

6.
Radiother Oncol ; 188: 109844, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37543057

RESUMO

AIM: To identify the optimal STereotactic Arrhythmia Radioablation (STAR) strategy for individual patients, cardiorespiratory motion of the target volume in combination with different treatment methodologies needs to be evaluated. However, an authoritative overview of the amount of cardiorespiratory motion in ventricular tachycardia (VT) patients is missing. METHODS: In this STOPSTORM consortium study, we performed a literature review to gain insight into cardiorespiratory motion of target volumes for STAR. Motion data and target volumes were extracted and summarized. RESULTS: Out of the 232 studies screened, 56 provided data on cardiorespiratory motion, of which 8 provided motion amplitudes in VT patients (n = 94) and 10 described (cardiac/cardiorespiratory) internal target volumes (ITVs) obtained in VT patients (n = 59). Average cardiac motion of target volumes was < 5 mm in all directions, with maximum values of 8.0, 5.2 and 6.5 mm in Superior-Inferior (SI), Left-Right (LR), Anterior-Posterior (AP) direction, respectively. Cardiorespiratory motion of cardiac (sub)structures showed average motion between 5-8 mm in the SI direction, whereas, LR and AP motions were comparable to the cardiac motion of the target volumes. Cardiorespiratory ITVs were on average 120-284% of the gross target volume. Healthy subjects showed average cardiorespiratory motion of 10-17 mm in SI and 2.4-7 mm in the AP direction. CONCLUSION: This review suggests that despite growing numbers of patients being treated, detailed data on cardiorespiratory motion for STAR is still limited. Moreover, data comparison between studies is difficult due to inconsistency in parameters reported. Cardiorespiratory motion is highly patient-specific even under motion-compensation techniques. Therefore, individual motion management strategies during imaging, planning, and treatment for STAR are highly recommended.

7.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240218

RESUMO

DNA repair pathways are essential for maintaining genome stability, and understanding the regulation of these mechanisms may help in the design of new strategies for treatments, the prevention of platinum-based chemoresistance, and the prolongation of overall patient survival not only with respect to ovarian cancer. The role of hyperthermic intraperitoneal chemotherapy (HIPEC) together with cytoreductive surgery (CRS) and adjuvant systemic chemotherapy is receiving more interest in ovarian cancer (OC) treatment because of the typical peritoneal spread of the disease. The aim of our study was to compare the expression level of 84 genes involved in the DNA repair pathway in tumors and the paired peritoneal metastasis tissue of patients treated with CRS/platinum-based HIPEC with respect to overall patient survival, presence of peritoneal carcinomatosis, treatment response, and alterations in the BRCA1 and BRCA2 genes. Tumors and metastatic tissue from 28 ovarian cancer patients collected during cytoreductive surgery before HIPEC with cisplatin were used for RNA isolation and subsequent cDNA synthesis. Quantitative real-time PCR followed. The most interesting findings of our study are undoubtedly the gene interactions among the genes CCNH, XPA, SLK, RAD51C, XPA, NEIL1, and ATR for primary tumor tissue and ATM, ATR, BRCA2, CDK7, MSH2, MUTYH, POLB, and XRCC4 for metastases. Another interesting finding is the correlation between gene expression and overall survival (OS), where a low expression correlates with a worse OS.


Assuntos
DNA Glicosilases , Hipertermia Induzida , Neoplasias Ovarianas , Humanos , Feminino , Quimioterapia Intraperitoneal Hipertérmica , Intervalo Livre de Doença , Hipertermia Induzida/métodos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Reparo do DNA/genética , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Taxa de Sobrevida , Estudos Retrospectivos , DNA Glicosilases/genética
8.
Environ Microbiol ; 25(5): 1041-1054, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36683138

RESUMO

The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation. Such a tight specificity brought about by water limitation was relaxed when intracellular osmotic stress was counteracted by the external addition of the compatible solute glycine betaine. With these facts in hand, XylR variants isolated earlier as effector-specificity responders to the non-substrate 1,2,4-trichlorobenzene under high matric stress were re-examined and found to be unaffected by water potential in vivo. All these phenomena could be ultimately explained as the result of water potential-dependent conformational changes in the A domain of XylR and its effector-binding pocket, as suggested by AlphaFold prediction of protein structures. The consequences of this scenario for the evolution of specificities in regulators and the emergence of catabolic pathways are discussed.


Assuntos
Pseudomonas putida , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Xilenos/metabolismo , Plasmídeos , Regulação Bacteriana da Expressão Gênica
9.
Nucleic Acids Res ; 51(D1): D1558-D1567, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420904

RESUMO

The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.


Assuntos
Bactérias , Bases de Dados Factuais , Bactérias/genética , Clonagem Molecular , DNA , Vetores Genéticos , Fenótipo , Plasmídeos/genética
10.
Metab Eng ; 75: 29-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343876

RESUMO

Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous ß-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.


Assuntos
Proteínas de Escherichia coli , Pseudomonas putida , Simportadores , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Celobiose/metabolismo , Glucose/metabolismo , Ácido Pirúvico/metabolismo , Proteômica , Celulose/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Proteínas de Escherichia coli/genética
11.
Int J Gynecol Cancer ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100282

RESUMO

BACKGROUND: The role of adjuvant treatment in the intermediate-risk group of patients with early-stage cervical cancer is controversial and is supported by a single randomized Gynecologic Oncology Group (GOG) 92 study performed more than 20 years ago. Recent retrospective studies have shown excellent local control in this group of patients after radical surgery with no additional adjuvant treatment. PRIMARY OBJECTIVE: To evaluate if adjuvant (chemo)radiation is associated with a survival benefit after radical surgery in patients with intermediate-risk cervical cancer. STUDY HYPOTHESIS: Radical surgery alone is non-inferior to the combined treatment of radical surgery followed by adjuvant (chemo)radiation in disease-free survival in patients with intermediate-risk cervical cancer. TRIAL DESIGN: This is a phase III, international, multicenter, randomized, non-inferiority trial in which patients with intermediate-risk cervical cancer will be randomized 1:1 into arm A, with no additional treatment after radical surgery, and arm B, receiving adjuvant external beam radiotherapy±brachytherapy ± concomitant chemotherapy. Patient data will be collected over 3 years post-randomization of the last enrolled patient for primary endpoint analysis or for 6 years for the overall survival analysis. MAJOR INCLUSION/EXCLUSION CRITERIA: Patients with intermediate-risk early-stage cervical cancer (IB1-IIA), defined as lymph node-negative patients with a combination of negative prognostic factors (tumor size >4 cm; tumor size >2 cm and lymphovascular space invasion; deep stromal invasion >2/3; or tumor-free distance <3 mm) with squamous cell carcinoma or human papillomavirus (HPV)-related adenocarcinoma, are eligible for the trial. PRIMARY ENDPOINT: Disease-free survival defined as time from randomization to recurrence diagnosis. SAMPLE SIZE: 514 patients from up to 90 sites will be randomized. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: It is estimated that the accrual will be completed by 2027 (with 3 additional years of follow-up) and primary endpoint results will be published by 2031. Estimated trial completion is by 2034. TRIAL REGISTRATION: NCT04989647.

12.
Front Cardiovasc Med ; 9: 870127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586650

RESUMO

Background and Purpose: Stereotactic arrhythmia radioablation (STAR) has been suggested as a promising therapeutic alternative in cases of failed catheter ablation for recurrent ventricular tachycardias in patients with structural heart disease. Cyberknife® robotic radiosurgery system utilizing target tracking technology is one of the available STAR treatment platforms. Tracking using implantable cardioverter-defibrillator lead tip as target surrogate marker is affected by the deformation of marker-target geometry. A simple method to account for the deformation in the target definition process is proposed. Methods: Radiotherapy planning CT series include scans at expiration and inspiration breath hold, and three free-breathing scans. All secondary series are triple registered to the primary CT: 6D/spine + 3D translation/marker + 3D translation/target surrogate-a heterogeneous structure around the left main coronary artery. The 3D translation difference between the last two registrations reflects the deformation between the marker and the target (surrogate) for the respective respiratory phase. Maximum translation differences in each direction form an anisotropic geometry deformation margin (GDM) to expand the initial single-phase clinical target volume (CTV) to create an internal target volume (ITV) in the dynamic coordinates of the marker. Alternative GDM-based target volumes were created for seven recent STAR patients and compared to the original treated planning target volumes (PTVs) as well as to analogical volumes created using deformable image registration (DIR) by MIM® and Velocity® software. Intra- and inter-observer variabilities of the triple registration process were tested as components of the final ITV to PTV margin. Results: A margin of 2 mm has been found to cover the image registration observer variability. GDM-based target volumes are larger and shifted toward the inspiration phase relative to the original clinical volumes based on a 3-mm isotropic margin without deformation consideration. GDM-based targets are similar (mean DICE similarity coefficient range 0.80-0.87) to their equivalents based on the DIR of the primary target volume delineated by dedicated software. Conclusion: The proposed GDM method is a simple way to account for marker-target deformation-related uncertainty for tracking with Cyberknife® and better control of the risk of target underdose. The principle applies to general radiotherapy as well.

13.
Biotechnol Adv ; 58: 107906, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35033587

RESUMO

Polyhydroxyalkanoates (PHA) are microbial polyesters produced by numerous prokaryotes. These materials are generally considered to be renewable and biodegradable alternatives to petrochemical polymers in numerous applications. PHA are accumulated by microbial cells in form of intracellular granules primarily as storage compounds; nevertheless, numerous recent reports also highlight the importance of PHA for the stress robustness of bacteria. Therefore, in this review, we focus on summarizing current knowledge on PHA accumulation in halophiles and thermophiles - prokaryotic microorganisms adapted to high salinity and high temperature, respectively. Utilization of extremophiles for PHA production brings numerous benefits stemming especially from the enhanced robustness of the process against contamination by common mesophilic microflora as a basement of the Next-Generation Industrial Biotechnology concept. Further, recent advances and future perspectives in metabolic engineering and synthetic biology of halophiles and thermophiles for PHA production improvement are also summarized and suggested. Facts and ideas gathered in this review hold a promise that biotechnological production of PHA by extremophiles can be sustainable and economically feasible enabling PHA to enter the market massively and compete with non-biodegradable petrochemical polymers in suitable applications.


Assuntos
Poli-Hidroxialcanoatos , Bactérias/genética , Bactérias/metabolismo , Biotecnologia , Temperatura Alta , Engenharia Metabólica , Poli-Hidroxialcanoatos/metabolismo
14.
Front Genet ; 13: 1085139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712854

RESUMO

The evidence that introns can influence different levels of transfer of genetic information between DNA and the final product is increasing. Longer first introns were found to be a general property of eukaryotic gene structure and shown to contain a higher fraction of conserved sequence and different functional elements. Our work brings more precise information about the position of the longest introns in human protein-coding genes and possible connection with biological function and gene expression. According to our results, the position of the longest intron can be localized to the first third of introns in 64%, the second third in 19%, and the third in 17%, with notable peaks at the middle and last introns of approximately 5% and 6%, respectively. The median lengths of the longest introns decrease with increasing distance from the start of the gene from approximately 15,000 to 5,000 bp. We have shown that the position of the longest intron is in some cases linked to the biological function of the given gene. For example, DNA repair genes have the longest intron more often in the second or third. In the distribution of gene expression according to the position of the longest intron, tissue-specific profiles can be traced with the highest expression usually at the absolute positions of intron 1 and 2. In this work, we present arguments supporting the hypothesis that the position of the longest intron in a gene is another biological factor modulating the transmission of genetic information. The position of the longest intron is related to biological functions in some human genes.

15.
J Clin Med ; 10(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070472

RESUMO

Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3. JUN-1 and -2 were established from a single tumour initiated in a H2K/v-jun transgenic mouse, JUN-3 originates from a different tumour in the same animal, and JUN-2fos-3 results from a targeted in vitro transformation of the JUN-2 cell line. The JUN-1, -2, and -3 cell lines represent a linear progression from the least transformed JUN-2 to the most transformed JUN-3, with regard to all the transformation characteristics studied, while the JUN-2fos-3 cell line exhibits a unique transformation mode, with little deregulation of cell growth and proliferation, but pronounced motility and invasiveness. The invasive sarcoma sublines JUN-2fos-3 and JUN-3 show complex metabolic profiles, with activation of both mitochondrial oxidative phosphorylation and glycolysis and a significant increase in spared respiratory capacity. The specific transcriptomic profile of invasive sublines features very complex biological relationships across the identified genes and proteins, with accentuated autocrine control of motility and angiogenesis. Pharmacologic inhibition of one of the autocrine motility factors identified, Ccl8, significantly diminished both motility and invasiveness of the highly transformed fibrosarcoma cell. This progression series could be greatly valuable for deciphering crucial aspects of sarcoma progression and defining new prognostic markers and potential therapeutic targets.

16.
Environ Microbiol ; 23(8): 4418-4433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097798

RESUMO

A revised model of the aromatic binding A domain of the σ54 -dependent regulator XylR of Pseudomonas putida mt-2 was produced based on the known 3D structures of homologous regulators PoxR, MopR and DmpR. The resulting frame was instrumental for mapping a number of mutations known to alter effector specificity, which were then reinterpreted under a dependable spatial reference. Some of these changes involved the predicted aromatic binding pocket but others occurred in distant locations, including dimerization interfaces and putative zinc binding site. The effector pocket was buried within the protein structure and accessible from the outside only through a narrow tunnel. Yet, several loop regions of the A domain could provide the flexibility required for widening such a tunnel for passage of aromatic ligands. The model was experimentally validated by treating the cells in vivo and the purified protein in vitro with benzyl bromide, which reacts with accessible nucleophilic residues on the protein surface. Structural and proteomic analyses confirmed the predicted in/out distribution of residues but also supported two additional possible scenarios of interaction of the A domain with aromatic effectors: a dynamic interaction of the fully structured yet flexible protein with the aromatic partner and/or inducer-assisted folding of the A domain.


Assuntos
Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Estruturais , Plasmídeos , Proteômica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fatores de Transcrição/genética
17.
Mol Diagn Ther ; 25(1): 99-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387348

RESUMO

BACKGROUND AND OBJECTIVE: Membrane solute carrier transporters play an important role in the transport of a wide spectrum of substrates including anticancer drugs and cancer-related physiological substrates. This study aimed to assess the prognostic relevance of gene expression and genetic variability of selected solute carrier transporters in breast cancer. METHODS: Gene expression was determined by quantitative real-time polymerase chain reaction. All SLC46A1 and SLCO1A2 exons and surrounding non-coding sequences in DNA extracted from the blood of patients with breast cancer (exploratory phase) were analyzed by next-generation sequencing technology. Common variants (minor allele frequency ≥ 5%) with in silico-predicted functional relevance were further analyzed in a large cohort of patients with breast cancer (n = 815) and their prognostic and predictive potential was estimated (validation phase). RESULTS: A gene expression and bioinformatics analysis suggested SLC46A1 and SLCO1A2 to play a putative role in the prognosis of patients with breast cancer. In total, 135 genetic variants (20 novel) were identified in both genes in the exploratory phase. Of these variants, 130 were non-coding, three missense, and two synonymous. One common variant in SLCO1A2 and four variants in SLC46A1 were predicted to be pathogenic by in silico programs and subsequently validated. A SLC46A1 haplotype block composed of rs2239911-rs2239910-rs8079943 was significantly associated with ERBB2/HER2 status and disease-free survival of hormonally treated patients. CONCLUSIONS: This study revealed the prognostic value of a SLC46A1 haplotype block for breast cancer that should be further studied.


Assuntos
Neoplasias da Mama/genética , Variação Genética , Transportadores de Ânions Orgânicos/genética , Transportador de Folato Acoplado a Próton/genética , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise de Sobrevida
18.
Microb Biotechnol ; 14(6): 2679-2685, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33047876

RESUMO

Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.


Assuntos
Pseudomonas putida , Reatores Biológicos , Carbono , Engenharia Metabólica , Pseudomonas putida/genética , Xilose
19.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238634

RESUMO

The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 5' untranslated regions (5'UTR) known to have the potential to regulate translation, such as the length of 5'UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 5'UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s. Although we found significant correlations among the features, we did not find any correlation between the numbers of 5'UTR features and protein tissue distribution and expression scores. We showed the existence of single nucleotide variants in relation to the 5'UTR features experimentally in a cohort of 105 breast cancer patients. 5'UTR features presumably prepare a complex playground, in which the other elements such as RNA binding proteins and non-coding RNAs play the major role in the fine-tuning of protein expression.


Assuntos
Subfamília A de Transportador de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Família Multigênica/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Subfamília A de Transportador de Cassetes de Ligação de ATP/classificação , Subfamília A de Transportador de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Biologia Computacional , Humanos , Íntrons/genética , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Xenobióticos/metabolismo
20.
ACS Synth Biol ; 9(10): 2749-2764, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32877604

RESUMO

The bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as lignocellulosic residues or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to address this limitation by adopting a recombinant cellulosome strategy for this host. In this work, we report an essential step in this endeavor-a display of designer enzyme-anchoring protein "scaffoldins", encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were optimally delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric ß-glucosidase and fluorescent proteins. Our results not only highlight the value of cell surface engineering for presentation of recombinant proteins on the envelope of Gram-negative bacteria but also pave the way toward designer cellulosome strategies tailored for P. putida.


Assuntos
Membrana Externa Bacteriana/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas de Membrana/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Ciclo Celular/química , Celulose/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Fluorescência Verde/metabolismo , Engenharia Metabólica/métodos , Domínios Proteicos , Proteínas Recombinantes/metabolismo , beta-Glucosidase/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA