Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(24): 3271-3289, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547998

RESUMO

BACKGROUND AND PURPOSE: Myocardial infarction (MI) is the leading cause of mortality globally due in part to the limited ability of cardiomyocytes (CMs) to regenerate. Recently, we demonstrated that overexpression of four-cell cycle factors, CDK1, CDK4, cyclin B1 and cyclin D1 (4F), induced cell division in ~20% of the post-mitotic CMs overexpressed 4F. The current study aims to identify a small molecule that augments 4F-induced CM cycle induction. EXPERIMENTAL APPROACH, KEY RESULTS: Screening of small molecules with a potential to augment 4F-induced cell-cycle induction in 60-day-old mature human induced pluripotent cardiomyocytes (hiPS-CMs) revealed N-(4,6-Dimethylpyridin-2-yl)-4-(pyridine-4-yl)piperazine-1-carbothioamide (NDPPC), which activates cell cycle progression in 4F-transduced hiPS-CMs. Autodock tool and Autodock vina computational methods showed that NDPPC has a potential interaction with the binding site at the human p38⍺ mitogen-activated protein kinase (p38⍺ MAP kinase), a critical negative regulator of the mammalian cell cycle. A p38 MAP kinase activity assay showed that NDPPC inhibits p38⍺ with 5-10 times lower IC50 compared to the other P38 isoforms in a dose-dependent manner. Overexpression of p38⍺ MAP kinase in CMs inhibited 4F cell cycle induction, and treatment with NDPPC reversed the cell cycle inhibitory effect. CONCLUSION AND IMPLICATIONS: NDPPC is a novel inhibitor for p38 MAP kinase and is a promising drug to augment CM cell cycle response to the 4F. NDPPC could become an adjunct treatment with other cell cycle activators for heart failure treatment.


Assuntos
Inibidores Enzimáticos , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ciclo Celular , Divisão Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mamíferos/metabolismo
2.
J Physiol ; 601(13): 2621-2634, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114864

RESUMO

Smooth muscle voltage-gated K+ (Kv) channels in resistance arteries control vascular tone and contribute to the coupling of blood flow with local metabolic activity. Members of the Kv1 family are expressed in vascular smooth muscle and are modulated upon physiological elevation of local metabolites, including the glycolytic end-product l-lactate and superoxide-derived hydrogen peroxide (H2 O2 ). Here, we show that l-lactate elicits vasodilatation of small-diameter mesenteric arteries in a mechanism that requires lactate dehydrogenase (LDH). Using the inside-out configuration of the patch clamp technique, we show that increases in NADH that reflect LDH-mediated conversion of l-lactate to pyruvate directly stimulate the activity of single Kv1 channels and significantly enhance the sensitivity of Kv1 activity to H2 O2 . Consistent with these findings, H2 O2 -evoked vasodilatation was significantly greater in the presence of 10 mM l-lactate relative to lactate-free conditions, yet was abolished in the presence of 10 mM pyruvate, which shifts the LDH reaction towards the generation of NAD+ . Moreover, the enhancement of H2 O2 -induced vasodilatation was abolished in arteries from double transgenic mice with selective overexpression of the intracellular Kvß1.1 subunit in smooth muscle cells. Together, our results indicate that the Kvß complex of native vascular Kv1 channels serves as a nodal effector for multiple redox signals to precisely control channel activity and vascular tone in the face of dynamic tissue-derived metabolic cues. KEY POINTS: Vasodilatation of mesenteric arteries by elevated external l-lactate requires its conversion by lactate dehydrogenase. Application of either NADH or H2 O2 potentiates single Kv channel currents in excised membrane patches from mesenteric artery smooth muscle cells. The binding of NADH enhances the stimulatory effects of H2 O2 on single Kv channel activity. The vasodilatory response to H2 O2 is differentially modified upon elevation of external l-lactate or pyruvate. The presence of l-lactate enhances the vasodilatory response to H2 O2 via the Kvß subunit complex in smooth muscle.


Assuntos
NAD , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Camundongos , Animais , NAD/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Dilatação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Artérias Mesentéricas , Oxirredução , Piruvatos/metabolismo , Piruvatos/farmacologia , Lactato Desidrogenases/metabolismo
3.
Cells ; 11(14)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883673

RESUMO

Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvß proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvß proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potássio , Membrana Celular/metabolismo , Potenciais da Membrana/fisiologia , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
4.
Nat Commun ; 13(1): 2051, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440632

RESUMO

Adequate oxygen delivery to the heart during stress is essential for sustaining cardiac function. Acute increases in myocardial oxygen demand evoke coronary vasodilation and enhance perfusion via functional upregulation of smooth muscle voltage-gated K+ (Kv) channels. Because this response is controlled by Kv1 accessory subunits (i.e., Kvß), which are NAD(P)(H)-dependent aldo-keto reductases, we tested the hypothesis that oxygen demand modifies arterial [NAD(H)]i, and that resultant cytosolic pyridine nucleotide redox state influences Kv1 activity. High-resolution imaging mass spectrometry and live-cell imaging reveal cardiac workload-dependent increases in NADH:NAD+ in intramyocardial arterial myocytes. Intracellular NAD(P)(H) redox ratios reflecting elevated oxygen demand potentiate native coronary Kv1 activity in a Kvß2-dependent manner. Ablation of Kvß2 catalysis suppresses redox-dependent increases in Kv1 activity, vasodilation, and the relationship between cardiac workload and myocardial blood flow. Collectively, this work suggests that the pyridine nucleotide sensitivity and enzymatic activity of Kvß2 controls coronary vasoreactivity and myocardial blood flow during metabolic stress.


Assuntos
NAD , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Músculo Liso , Nucleotídeos , Oxirredução , Oxigênio , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Piridinas
6.
Methods Mol Biol ; 2191: 151-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865744

RESUMO

The delivery of cells into damaged myocardium induces limited cardiac regeneration due to extensive cell death. In an effort to limit cell death, our lab formulates three-dimensional matrices as a delivery system for cell therapy. Our primary work has been focused on the formation of engineered cardiac tissues (ECTs) from human-induced pluripotent stem cell-derived engineered cardiac cells. However, ECT immaturity hinders ability to fully recover damaged myocardium. Various conditioning regimens such as mechanical stretch and/or electric pacing have been used to activate maturation pathways. To improve ECT maturity, we use non-contacting chronic light stimulation using heterologously expressed light-sensitive channelrhodopsin ion channels. We transduce ECTs with an AAV packaged channelrhodopsin and chronically optically pace (C-OP) ECTs for 1 week above the intrinsic beat rate, resulting in increased ECT electrophysiological properties.


Assuntos
Channelrhodopsins/genética , Células-Tronco Pluripotentes Induzidas/citologia , Optogenética/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/genética , Fenômenos Eletrofisiológicos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Regeneração/genética
7.
J Tissue Eng ; 10: 2041731419841748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024681

RESUMO

The immaturity of human induced pluripotent stem cell derived engineered cardiac tissues limits their ability to regenerate damaged myocardium and to serve as robust in vitro models for human disease and drug toxicity studies. Several chronic biomimetic conditioning protocols, including mechanical stretch, perfusion, and/or electrical stimulation promote engineered cardiac tissue maturation but have significant technical limitations. Non-contacting chronic optical stimulation using heterologously expressed channelrhodopsin light-gated ion channels, termed optogenetics, may be an advantageous alternative to chronic invasive electrical stimulation for engineered cardiac tissue conditioning. We designed proof-of-principle experiments to successfully transfect human induced pluripotent stem cell derived engineered cardiac tissues with a desensitization resistant, chimeric channelrhodopsin protein, and then optically paced engineered cardiac tissues to accelerate maturation. We transfected human induced pluripotent stem cell engineered cardiac tissues using an adeno-associated virus packaged chimeric channelrhodopsin and then verified optically paced by whole cell patch clamp. Engineered cardiac tissues were then chronically optically paced above their intrinsic beat rates in vitro from day 7 to 14. Chronically optically paced resulted in improved engineered cardiac tissue electrophysiological properties and subtle changes in the expression of some cardiac relevant genes, though active force generation and histology were unchanged. These results validate the feasibility of a novel chronically optically paced paradigm to explore non-invasive and scalable optically paced-induced engineered cardiac tissue maturation strategies.

8.
Microcirculation ; 25(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29110409

RESUMO

Smooth muscle voltage-gated potassium (Kv) channels are important regulators of microvascular tone and tissue perfusion. Recent studies indicate that Kv1 channels represent a key component of the physiological coupling between coronary blood flow and myocardial oxygen demand. While the mechanisms by which metabolic changes in the heart are transduced to alter coronary Kv1 channel gating and promote vasodilation are unclear, a growing body of evidence underscores a pivotal role of Kv1 channels in sensing the cellular redox status. Here, we discuss current knowledge of mechanisms of Kv channel redox regulation with respect to pyridine nucleotide modulation of Kv1 function via ancillary Kvß proteins as well as direct modulation of channel activity via reactive oxygen and nitrogen species. We identify areas of additional research to address the integration of regulatory processes under altered physiological and pathophysiological conditions that may reveal insights into novel treatment strategies for conditions in which the matching of coronary blood supply and myocardial oxygen demand is compromised.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Nucleotídeos de Pirimidina/metabolismo , Animais , Vasos Coronários/química , Humanos , Microcirculação , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Microsc Microanal ; 23(4): 826-842, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28625174

RESUMO

Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.


Assuntos
Contagem de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microscopia Confocal/métodos , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Automação Laboratorial/métodos , Bioestatística/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA