Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 126080, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615454

RESUMO

The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Inocuidade dos Alimentos , Smartphone , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Colorimetria/métodos , Colorimetria/instrumentação
2.
J Photochem Photobiol B ; 249: 112802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918122

RESUMO

Lanthanide-doped core-shell nanomaterials have illustrated budding potential as luminescent materials, but their biological applications have still been very limited due to their aqueous solubility and biocompatibility. Here, we report a simple and cost-effective approach to construct a water-stable chitosan-functionalized lanthanoid-based core shell (Ca-Eu:Y2O3@SiO2) nanophosphor. The as-synthesized Ca-Eu:Y2O3@SiO2-chitosan (CEY@SiO2-CH) nanophosphor has been characterized for its structural, morphological, and optical properties, by employing different analytical tools. This sensing platform is suitable for dsDNA probing by tracing the "turn on" fluorescence signal generated by CEY@SiO2-CH nanophosphor with the addition of dsDNA. The ratio of fluorescence intensity enhancement is proportional to the concentration of dsDNA in the range 0.1-90 nM, with the limit of detection at ⁓16.1 pM under optimal experimental conditions. The enhancement in fluorescence response of functionalized core-shell phosphor with dsDNA is due to the antenna effect. Additionally, response of probe has been studied for the real samples displaying percent recovery in between 101 and 105, maximum RSD% upto 5.23 (n = 3). This outcome can be applied to the selective sensing of dsDNA through optical response. These findings establish the CEY@SiO2-CH a simple, portable, and potential candidate as a sensor for rapid and analytical detection of dsDNA.


Assuntos
Técnicas Biossensoriais , Quitosana , Európio/química , Dióxido de Silício/química , Corantes , Água , DNA
3.
Plant Physiol Biochem ; 202: 107908, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549572

RESUMO

Nano fertilizers (NFs) are now becoming an important tool for plant nutrient management having capabilities to improve soil fertility, crop productivity and quality of agricultural products. Since, they are needed in very small amount, thus, reduces cost of crop production. Among different essential or beneficial plant nutrients, Zn and Ti are important micro nutrients having number of beneficial effect on crop growth, yield, quality and post harvest life. Present experiment was carried out to prepare ZnO and TiO2 nanoparticles (NPs) through green technology by using aqueous extract of Ipomoea carnea (morning glory) leaves. In order to investigate size, morphology, composition, and stability of selected NPs, the detailed characterization was carried out using UV-visible spectroscopy, FTIR, HRTEM, EDX, BET, X-ray diffraction, XPS and particle size distribution studies. Subsequently, the effect of foliar spray of ZnO and TiO2 NPs was evaluated in respect of vegetative growth, yield and quality of black carrot (Daucus carota L.) cv. Pusa Asita in presence of 50% Recommended dose of fertilizer (RDF) to assess their effect on fertilizer use efficiency also. There were 8 treatments viz. Control (no fertilizer), recommended dose of fertilizer (RDF), TiO2 (5, 10 and 15 ppm along with 50% RDF), ZnO (50, 75 and 100 ppm along with 50% RDF)] with 3 replications following Randomised Block Design having 24 plots (1 m × 1 m). The observations were taken for vegetative growth, edible root yield and root quality parameters. Although, the growth, yield and quality parameters were found superior (root yield 43.84 g/plant) under conventional system of recommended dose of fertilizers (RDF) of NPK, however, TiO2 NPs also showed very promising result close to RDF as compared to ZnO NPs. Among them, 5 ppm TiO2 foliar application along with 50% NPK was found to be the best in terms of vegetative growth, root yield (38.73 g/plant) and quality of black carrot. It was also found that higher concentration of TiO2 and ZnO NPs had adverse effect on the plant performance. Therefore, it can be concluded that 5 ppm TiO2 NPs along with 50% RDF was good for black carrot production.


Assuntos
Daucus carota , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Extratos Vegetais/farmacologia
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122782, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209471

RESUMO

The divalent (Ca2+)-doped Eu:Y2O3@SiO2 core-shell luminescent nanophosphors have been synthesised by a cost-effective combustion technique. Various characterizations were carried out to confirm the successful formation of the core-shell structure. The TEM micrograph reveals the thickness of the SiO2 coating over Ca-Eu:Y2O3 as ∼25 nm. The optimal value of silica coating over the phosphor has been obtained as 10 vol%(TEOS) of SiO2, with this value increasing fluorescence intensity by 34 %. Phosphor exhibits CIE coordinates as x = 0.425, y = 0.569 and a CCT value as ∼2115 K with color purity and the respective CRI of 80 % and 98 %, respectively, which make the core-shell nanophosphor suitable for warm LEDs, and other optoelectronic applications. Further, the core-shell nanophosphor has been investigated for the visualisation of latent finger prints and as security ink. The findings point towards the prospective future application of nanophosphor materials for anti-counterfeiting purposes and latent finger prints for forensic purposes.

5.
Sci Rep ; 12(1): 5824, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388033

RESUMO

A series of Eu3+ ions doped Ca0.05Y1.93-xO3:0.02Ho3+ (CYO:Ho3+,xEu3+) nanophosphors having multicolour tuneability have been synthesised by following a simplistic solution combustion approach. The synthesised samples have been characterised by employing X-ray diffraction (XRD), Transmission electron microscope (TEM), and Fourier transforms infrared spectroscopy (FTIR). The optical properties have been engrossed by UV-visible and photoluminescent excitation and emission spectra, and decay lifetimes measurements. The characteristic emission, which occurs due to the f-f transition of Ho3+ and Eu3+ has been observed in emission spectra with excitation of 448 nm. By adjusting the doping ratio of Ho3+/Eu3+, the as-synthesized nanophosphor accomplishes multicolour tunability from green-yellow to red. Emission spectra and decay lifetime curve recommend dipole-dipole interaction causes energy transfer from Ho3+ → Eu3+. The energy transfer process from Ho3+ to Eu3+ has been confirmed through electric dipole-dipole interaction with critical distance 15.146 Å. Moreover, temperature dependent emission spectra show the high thermal stability with an activation energy ⁓ 0.21 eV, with the quantum efficiency of 83.6%. CIE coordinate illustrates that the singly doped Ho3+ and Eu3+ lie in the green and red region, respectively, while the as-synthesized CYO:Ho3+,xEu3+shows tunability from green to red with low CCT and high colour purity values. Hence, the CYO:Ho3+,xEu3+nanophosphor may be a near-UV excited multicolour colour-tunable pertinent candidate with potential prospects for multicolour- display and near-ultraviolet lighting applications.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119942, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015746

RESUMO

The present work reports a highly efficient Ca doped Eu: Y2O3 i.e Ca0.05Eu0.01Y1.94O3 (CEY.) nanophosphor material synthesized through a facile combustion method, as a simple and selective turn-off fluorescence probe for the quantitative analysis of iron ions (Fe3+). The proposed sensor allows the quantification of iron in the range of 10 µM-90 µM with a limit of detection (LOD) ∼ 63.2 nM under the natural pH range. Moreover, CEY nanophosphor shows an excellent fluorescence phenomenon with a gradual increase in the Fe3+ ion concentration. It has been observed that the corresponding PL intensity gets completely quenched with 500 µM Fe3+ ion concentration. Furthermore, the applicability of the sensor as an efficient probe has been investigated with real water samples, iron tablets, and human blood serum (HBS). The selectivity of the probe has also been analyzed with various metal ions and biomolecules. Thus, in turn, the as-obtained sensing probe illustrates an excellent accuracy, sensitivity, and selectivity, and offers potential application in clinical diagnosis, biological and real water sample studies, with the detection of Fe3+ ion. Furthermore, it does not require any acidic medium for a level-free, and non-enzymic detection of a real sample with almost not affecting the sample quality and henceforth provides more reliable results.


Assuntos
Nanopartículas , Água , Corantes Fluorescentes , Humanos , Luminescência , Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA