Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(27): 39217-39231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814560

RESUMO

To overcome the human and animal survivability risk, sustainable development is the only option on earth that can be achieved through the maximum use of renewable environmental resources. Recycling of waste paper is an emerging waste management approach to conserve natural resources. Herein, we studied enzyme-mediated process to recycle the xerographic paper by using the crude fungal extract from indigenously isolated fungi identified as Aspergillus assiutensis. The fungal enzyme cocktail has been characterized for the production of multiple enzymes namely cellulase, amylase, xylanase, pectinase, and protease. All these enzymes have pH optima in the acidic range and except cellulase and all the enzymes are stable from 10 to 80 C. In the zymogram analysis, pectinase, xylanase, amylase, and cellulase were detected at 68 kDa, ~ 54 kDa, 38 kDa, and 30 kDa, respectively. Also, the presence of protease was confirmed by the clear zone at 68, 31, and 16 kDa. A 26% decrease in the kappa number and reduction in Hex A of the pulp was observed on the treatment of the pulp with enzyme as compared to the control pulp without any treatment. The physical and chemical properties of the pulp were also improved by enzyme-mediated pulping as compared to the control The physiochemical parameter of the effluent like TDS was reduced (397 ppm) significantly in comparison to chemical deinking process and it was within the permissible limit. BOD and alkalinity were reduced when the enzymes and chemical dosage were used in combination. These results indicate that chemi-enzymatic deinking is most promising to reduce or remove the pollution parameters including ink and this approach can be used in the paper and pulp industry for sustainable development.


Assuntos
Aspergillus , Papel , Reciclagem , Aspergillus/enzimologia , Poligalacturonase , Celulase
2.
World J Microbiol Biotechnol ; 39(11): 305, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691054

RESUMO

The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.


Assuntos
Actinobacteria , Poligalacturonase , Animais , Poligalacturonase/genética , Reatores Biológicos , Catálise , Eucariotos
3.
3 Biotech ; 12(10): 261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082361

RESUMO

Pectin lyase (PNL) is an important enzyme of the pectinases group which degrades pectin polymer to 4,5-unsaturated oligogalacturonides by a unique ß-elimination mechanism and is used in several industries. The existence of multigene families of pectin lyases has been investigated by mining microbial genomes. In the present study, 52 pectin lyase genes were predicted from sequenced six species of Fusarium, namely F. fujikuroi, F. graminearum, F. proliferatum, F. oxysporum, F. verticillioides and F. virguliforme. These sequences were in silico characterized for several physico-chemical, structural and functional attributes. The translated PNL proteins showed variability with 344-1142 amino acid residues, 35.44-127.41 kDa molecular weight, and pI ranging from 4.63 to 9.28. The aliphatic index ranged from 75.33 to 84.75. Multiple sequence alignment analysis showed several conserved amino acid residues and five distinct groups marked as I, II, III, IV, and V were observed in the phylogenetic tree. The Three-dimensional Structure of five of these PNLs, each representing a distinct group of phylogenetic trees was predicted using I-TASSER Server and validated. The pectin lyase proteins of Fusarium species revealed close similarity with pectin lyase of Aspergillus niger PelA(1IDJ) and PelB(1QCX). Diversity in the structural motifs was observed among Fusarium species with 2 ß-sheets, 1 ß-hairpin, 7-12 ß bulges, 18-25 strands, 6 -11 helices, 1 helix-helix interaction, 32-49 ß turns, 2-6 γ turns and 2- 3 disulfide bonds. The unique Pec_lyase domain was uniformly observed among all PNL proteins confirming its identity. The genome-wide mining of Fusarium species was attempted to provide the diversity of PNL genes, which could be explored for diverse applications after performing cloning and expression studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03333-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA