Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(5): 100301, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228755

RESUMO

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified.

2.
Sci Transl Med ; 14(674): eabj4375, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475903

RESUMO

Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.


Assuntos
Sistema Biliar , Humanos , Camundongos , Animais , Constrição Patológica , Senescência Celular
3.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245467

RESUMO

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Assuntos
Transplante de Fígado , Animais , Ductos Biliares/patologia , Células Epiteliais/patologia , Fibrose , Humanos , Doadores Vivos , Camundongos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6859-6862, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892682

RESUMO

Homes equipped with ambient sensors can measure physiological signals correlated with the resident's health without requiring a wearable device. Gait characteristics may reveal physical imbalances or recognize changes in cognitive health. In this paper, we use the physical interactions with floor to both localize the resident and monitor their gait. Accelerometers are placed at the corners of the room for sensing. Gradient boosting regression was used to perform localization with an accuracy of 82%, reasonably accounting for inhomogeneity in the floor with just 3 sensors. A method using step time variance is proposed to detect gait imbalances; results on induced limps are presented.


Assuntos
Análise da Marcha , Dispositivos Eletrônicos Vestíveis , Marcha , Humanos , Aprendizado de Máquina , Monitorização Fisiológica
5.
Sci Signal ; 14(688)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158399

RESUMO

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Assuntos
Fator de Crescimento Insulin-Like I , Regeneração Hepática , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Epiteliais , Hepatócitos , Fator de Crescimento Insulin-Like I/genética , Fígado
6.
J Hepatol ; 74(1): 185-199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976865

RESUMO

Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Doença Hepática Terminal/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Doença Hepática Terminal/fisiopatologia , Humanos , Regeneração Hepática
7.
J Hepatol ; 74(4): 860-872, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33221352

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS: The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS: Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION: These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY: Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.


Assuntos
Neoplasias dos Ductos Biliares , Quimiocina CCL2/metabolismo , Colangiocarcinoma , Citocina TWEAK/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Descoberta de Drogas , Humanos , Camundongos , Ratos , Transdução de Sinais , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
8.
J Hepatol ; 73(2): 349-360, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32169610

RESUMO

BACKGROUND & AIM: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI). METHODS: Several phenotypically distinct BMDM populations were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy volunteers were evaluated in immunocompetent APAP-ALI mice. RESULTS: BMDMs rapidly localised to the liver and spleen within 4 h of administration. Injection of AAMs specifically reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and reduced levels of several circulating proinflammatory cytokines within 24 h. AAMs displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. Crosstalk with the host innate immune system was demonstrated by reduced infiltrating host Ly6Chi macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice, underscoring the translational potential of these findings. CONCLUSION: We identify that AAMs have value as a cell-based therapy in an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential cell-based therapy for APAP overdose patients with established liver injury. LAY SUMMARY: After an overdose of acetaminophen (paracetamol), some patients present to hospital too late for the current antidote (N-acetylcysteine) to be effective. We tested whether macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as a cell-based therapy in an experimental model of acetaminophen overdose. Injection of alternatively activated macrophages rapidly reduced liver injury and reduced several mediators of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute liver injury.


Assuntos
Acetaminofen/intoxicação , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença Hepática Induzida por Substâncias e Drogas , Macrófagos , Comunicação Parácrina/imunologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular , Regeneração Hepática/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fagocitose , Resultado do Tratamento
9.
Nat Med ; 25(10): 1560-1565, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591593

RESUMO

Therapies to reduce liver fibrosis and stimulate organ regeneration are urgently needed. We conducted a first-in-human, phase 1 dose-escalation trial of autologous macrophage therapy in nine adults with cirrhosis and a Model for End-Stage Liver Disease (MELD) score of 10-16 (ISRCTN 10368050). Groups of three participants received a single peripheral infusion of 107, 108 or up to 109 cells. Leukapheresis and macrophage infusion were well tolerated with no transfusion reactions, dose-limiting toxicities or macrophage activation syndrome. All participants were alive and transplant-free at one year, with only one clinical event recorded, the occurrence of minimal ascites. The primary outcomes of safety and feasibility were met. This study informs and provides a rationale for efficacy studies in cirrhosis and other fibrotic diseases.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença Hepática Terminal/terapia , Cirrose Hepática/terapia , Macrófagos/transplante , Idoso , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Relação Dose-Resposta Imunológica , Doença Hepática Terminal/imunologia , Doença Hepática Terminal/patologia , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Regeneração Hepática , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade
11.
Nat Commun ; 9(1): 1020, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523787

RESUMO

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFß production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFß-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFß as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.


Assuntos
Ductos Biliares/lesões , Ductos Biliares/patologia , Senescência Celular/fisiologia , Colangite Esclerosante/patologia , Cirrose Hepática Biliar/patologia , Fígado/patologia , Regeneração/fisiologia , Animais , Células Cultivadas , Colangite Esclerosante/terapia , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Humanos , Queratina-19/genética , Cirrose Hepática Biliar/terapia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
12.
Nature ; 547(7663): 350-354, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28700576

RESUMO

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired-a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of ß1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by ß1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Hepatócitos/patologia , Regeneração Hepática , Fígado/citologia , Fígado/patologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Proliferação de Células , Feminino , Integrina beta1/genética , Fígado/lesões , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cytotherapy ; 19(9): 1113-1124, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28673774

RESUMO

BACKGROUND AIMS: Autologous macrophage therapy represents a potentially significant therapeutic advance for the treatment of severe progressive liver cirrhosis. Administration of macrophages has been shown to reduce inflammation and drive fibrotic scar breakdown and tissue repair in relevant models. This therapeutic approach is being assessed for safety and feasibility in a first-in-human trial (MAcrophages Therapy for liver CirrHosis [MATCH] trial). METHODS: We outline the development and validation phases of GMP production. This includes use of the CliniMACS Prodigy cell sorting system to isolate CD14+ cells; optimizing macrophage culture conditions, assessing cellular identity, product purity, functional capability and determining the stability of the final cell product. RESULTS: The GMP-compliant macrophage products have a high level of purity and viability, and have a consistent phenotypic profile, expressing high levels of mature macrophage markers 25F9 and CD206 and low levels of CCR2. The macrophages demonstrate effective phagocytic capacity, are constitutively oriented to an anti-inflammatory profile and remain responsive to cytokine and TLR stimulation. The process validation shows that the cell product in excipient is remarkably robust, consistently passing the viability and phenotypic release criteria up to 48 hours after harvest. CONCLUSIONS: This is the first report of validation of a large-scale, fully Good Manufacturing Practice-compliant, autologous macrophage cell therapy product for the potential treatment of cirrhosis. Phenotypic and functional assays confirm that these cells remain functionally viable for up to 48 h, allowing significant flexibility in administration to patients.


Assuntos
Técnicas de Cultura de Células/métodos , Cirrose Hepática/terapia , Macrófagos/citologia , Fagocitose/fisiologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células/normas , Separação Celular/métodos , Separação Celular/normas , Transplante de Células/métodos , Citocinas/farmacologia , Feminino , Humanos , Lectinas Tipo C/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Monócitos/citologia , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo
14.
Int J Mol Sci ; 18(2)2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28134848

RESUMO

The role of the liver and the endocrine pancreas in development of hyperinsulinemia in different types of obesity remains unclear. Sedentary rats (160 g) were fed a low-fat-diet (LFD, chow 13% kcal fat), high-fat-diet (HFD, 35% fat), or HFD+ 30% ethanol+ 30% fructose (HF-EFr, 22% fat). Overnight-fasted rats were culled after one, four or eight weeks. Pancreatic and hepatic mRNAs were isolated for subsequent RT-PCR analysis. After eight weeks, body weights increased three-fold in the LFD group, 2.8-fold in the HFD group, and 2.4-fold in the HF-EFr (p < 0.01). HF-EFr-fed rats had the greatest liver weights and consumed less food during Weeks 4-8 (p < 0.05). Hepatic-triglyceride content increased progressively in all groups. At Week 8, HOMA-IR values, fasting serum glucose, C-peptide, and triglycerides levels were significantly increased in LFD-fed rats compared to that at earlier time points. The greatest plasma levels of glucose, triglycerides and leptin were observed in the HF-EFr at Week 8. Gene expression of pancreatic-insulin was significantly greater in the HFD and HF-EFr groups versus the LFD. Nevertheless, insulin: C-peptide ratios and HOMA-IR values were substantially higher in HF-EFr. Hepatic gene-expression of insulin-receptor-substrate-1/2 was downregulated in the HF-EFr. The expression of phospho-ERK-1/2 and inflammatory-mediators were greatest in the HF-EFr-fed rats. Chronic intake of both LFD and HFD induced obesity, MetS, and intrahepatic-fat accumulation. The hyperinsulinemia is the strongest in rats with the lowest body weights, but having the highest liver weights. This accompanies the strongest increase of pancreatic insulin production and the maximal decrease of hepatic insulin signaling, which is possibly secondary to hepatic fat deposition, inflammation and other factors.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Insulina/biossíntese , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Etanol , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fígado Gorduroso/patologia , Frutose , Homeostase , Metabolismo dos Lipídeos/genética , Fígado/enzimologia , Fígado/patologia , Masculino , Modelos Biológicos , Tamanho do Órgão , Pâncreas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Aumento de Peso
15.
NPJ Regen Med ; 2: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302348

RESUMO

The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.

16.
Proc Natl Acad Sci U S A ; 113(43): 12250-12255, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791012

RESUMO

The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.


Assuntos
Carcinogênese/genética , Colangiocarcinoma/genética , Neoplasias Experimentais/genética , Prognóstico , Receptor Notch3/genética , Animais , Colangiocarcinoma/patologia , Humanos , Região de Junção de Imunoglobulinas/genética , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/patologia , Fosfatidilinositol 3-Quinases/genética , Ratos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
17.
Am J Pathol ; 186(7): 1762-1774, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181403

RESUMO

Complications of end-stage chronic liver disease signify a major cause of mortality worldwide. Irrespective of the underlying cause, most chronic liver diseases are characterized by hepatocellular necrosis, inflammation, fibrosis, and proliferation of liver progenitor cells or ductular reactions. Vast differences exist between experimental models that mimic these processes, and their identification is fundamental for translational research. We compared two common murine models of chronic liver disease: the choline-deficient, ethionine-supplemented (CDE) diet versus thioacetamide (TAA) supplementation. Markers of liver injury, including serum alanine transaminase levels, apoptosis, hepatic fat loading, and oxidative stress, as well as inflammatory, fibrogenic and liver progenitor cell responses, were assessed at days 3, 7, 14, 21, and 42. This study revealed remarkable differences between the models. It identified periportal injury and fibrosis with an early peak and slow normalization of all parameters in the CDE regimen, whereas TAA-treated mice had pericentral patterns of progressive injury and fibrosis, resulting in a more severe hepatic injury phenotype. This study is the first to resolve two different patterns of injury and fibrosis in the CDE and TAA model and to indisputably identify the fibrosis pattern in the TAA model as driven from the pericentral vein region. Our data provide a valuable foundation for future work using the CDE and TAA regimens to model a variety of human chronic liver diseases.


Assuntos
Modelos Animais de Doenças , Hepatócitos/fisiologia , Hepatopatias/fisiopatologia , Células-Tronco/fisiologia , Animais , Doença Crônica , Hepatócitos/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/patologia
18.
Eur J Med Chem ; 120: 275-83, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27208658

RESUMO

BACKGROUND & AIMS: The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects. METHODS: Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents. RESULTS: Neither lenalidomide nor thalidomide (100 µM) affected tumorigenic LPCs but killed their non-tumorigenic counterparts. Sorafenib arrested growth in both cell types. All but two derivatives of thalidomide were ineffective; of the two effective derivatives, one (thalidomide C1) specifically affected the tumorigenic cell line (10 µM). Mitotic and apoptotic analyses revealed that thalidomide C1 induced apoptotic cell death and not mitotic arrest. CONCLUSIONS: This study shows that screens incorporating non-tumorigenic and tumorigenic liver cell lines are a sound approach to identify agents that are effective and selective. A high throughput instrument such as the Cellavista affords robust and reproducible objective measurements with a large number of replicates that are reliable. These experiments show that neither lenalidomide nor thalidomide are potentially useful for anti-liver cancer therapy as they kill non-tumorigenic liver cells and not their tumorigenic counterparts. Sorafenib in contrast, is highly effective, but not selective. One tested thalidomide derivative has potential as an anti-tumor drug since it induced growth arrest; and importantly, it selectively induced apoptotic cell death only in tumorigenic liver progenitor cells.


Assuntos
Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Talidomida/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lenalidomida , Neoplasias Hepáticas/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Sorafenibe , Células-Tronco/patologia , Talidomida/análogos & derivados
19.
Front Immunol ; 5: 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24592262

RESUMO

Chronic liver diseases (CLD) such as hepatitis B and C virus infection, alcoholic liver disease, and non-alcoholic steatohepatitis are associated with hepatocellular necrosis, continual inflammation, and hepatic fibrosis. The induced microenvironment triggers the activation of liver-resident progenitor cells (LPCs) while hepatocyte replication is inhibited. In the early injury stages, LPCs regenerate the liver by proliferation, migration to sites of injury, and differentiation into functional biliary epithelial cells or hepatocytes. However, when this process becomes dysregulated, wound healing can progress to pathological fibrosis, cirrhosis, and eventually hepatocellular carcinoma. The other key mediators in the pathogenesis of progressive CLD are fibrosis-driving, activated hepatic stellate cells (HSCs) that usually proliferate in very close spatial association with LPCs. Recent studies from our group and others have suggested the potential for cytokine and chemokine cross-talk between LPCs and HSCs, which is mainly driven by the tumor necrosis factor (TNF) family members, TNF-like weak inducer of apoptosis (TWEAK) and lymphotoxin-ß, potentially dictating the pathological outcomes of chronic liver injury.

20.
J Hepatol ; 60(1): 143-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23978713

RESUMO

BACKGROUND & AIMS: In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. METHODS: C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. RESULTS: In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. CONCLUSIONS: In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Cílios/fisiologia , Proteínas Hedgehog/fisiologia , Fígado/patologia , Transdução de Sinais/fisiologia , Animais , Doença Crônica , Transição Epitelial-Mesenquimal , Fatores de Transcrição Kruppel-Like/análise , Fatores de Transcrição Kruppel-Like/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/análise , Receptores Acoplados a Proteínas G/fisiologia , Receptor Smoothened , Tioacetamida , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA