Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610328

RESUMO

Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance in the study of H. pylori outer membrane proteins and their identified receptors. In the present study we assess the way in which outer membrane protein-cell receptor reactions are applicable in establishing a reliable diagnosis. Herein, as well as in other previous studies of ours, we explore the reliability of the binding reaction between the best characterized H. pylori adhesin BabA and its receptor, the blood antigen Leb. For the purpose we developed surface plasmon resonance (SPR) and double resonance long period grating (DR LPG) biosensors based on the BabA-Leb binding reaction for diagnosing H. pylori infection. In SPR detection, the sensitivity was estimated at 3000 CFU/mL-a much higher sensitivity than that of the RUT test. The DR LPG biosensor proved to be superior in terms of accuracy and sensitivity-concentrations as low as 102 CFU/mL were detected.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Ressonância de Plasmônio de Superfície , Infecções por Helicobacter/diagnóstico , Reprodutibilidade dos Testes , Antígenos de Bactérias
2.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067679

RESUMO

We report on a study of the temperature dependence of the response of a BSO crystal based polarimetric current sensor with spectral interrogation. Two possible interrogation schemes are discussed. The spectral dependence of the optical rotation along the crystal caused by temperature and current changes is investigated, and approximate dependences for the sensitivities to current SI and temperature ST are derived. A mixed term in the response with spectral interrogation is revealed, the elimination of which is achieved by tracking wavelength shifts Δλ1 and Δλ2 of two distinct extrema in the polarimetric response. A temperature independent second degree equation for the current changes ΔI as a function of the measured spectral shifts is derived and tested.

3.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992057

RESUMO

One of the first clinical observations related to COVID-19 identified hematological dysfunctions. These were explained by theoretical modeling, which predicted that motifs from SARS-CoV-2 structural proteins could bind to porphyrin. At present, there is very little experimental data that could provide reliable information about possible interactions. The surface plasmon resonance (SPR) method and double resonance long period grating (DR LPG) were used to identify the binding of S/N protein and the receptor bind domain (RBD) to hemoglobin (Hb) and myoglobin (Mb). SPR transducers were functionalized with Hb and Mb, while LPG transducers, were only with Hb. Ligands were deposited by the matrix-assisted laser evaporation (MAPLE) method, which guarantees maximum interaction specificity. The experiments carried out showed S/N protein binding to Hb and Mb and RBD binding to Hb. Apart from that, they demonstrated that chemically-inactivated virus-like particles (VLPs) interact with Hb. The binding activity of S/N- and RBD proteins was assessed. It was found that protein binding fully inhibited heme functionality. The registered N protein binding to Hb/Mb is the first experimental fact that supports theoretical predictions. This fact suggests another function of this protein, not only binding RNA. The lower RBD binding activity reveals that other functional groups of S protein participate in the interaction. The high-affinity binding of these proteins to Hb provides an excellent opportunity for assessing the effectiveness of inhibitors targeting S/N proteins.


Assuntos
Hemoglobinas , Mioglobina , Proteínas Estruturais Virais , Humanos , COVID-19 , Hemoglobinas/química , Mioglobina/química , Ligação Proteica , SARS-CoV-2 , Ressonância de Plasmônio de Superfície , Proteínas Estruturais Virais/química
4.
Anal Biochem ; 670: 115137, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36997015

RESUMO

Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH 7.4 and pH 8.5. The Fenton's system generates various ROS (H2O2, OH, -OH, OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25-60% effect compared to albumin). In the second system, H2O2 was used both as a strong oxidant and as a ROS. A similar effect was observed (30-70%); N protein approached the effect of albumin at physiological pH (∼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH 7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5-1.7 fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Peróxido de Hidrogênio/metabolismo , Glicoproteína da Espícula de Coronavírus , Nucleocapsídeo/metabolismo , Inflamação , Albuminas , Anticorpos Antivirais
5.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979530

RESUMO

The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.


Assuntos
Técnicas Biossensoriais , COVID-19 , Viroses , Humanos , Ressonância de Plasmônio de Superfície/métodos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biossensoriais/métodos
6.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436052

RESUMO

Cell-based assays are a valuable tool for examination of virus-host cell interactions and drug discovery processes, allowing for a more physiological setting compared to biochemical assays. Despite the fact that cell-based SPR assays are label-free and thus provide all the associated benefits, they have never been used to study viral growth kinetics and to predict drug antiviral response in cells. In this study, we prove the concept that the cell-based SPR assay can be applied in the kinetic analysis of the early stages of viral infection of cells and the antiviral drug activity in the infected cells. For this purpose, cells immobilized on the SPR slides were infected with human coronavirus HCov-229E and treated with hydroxychloroquine. The SPR response was measured at different time intervals within the early stages of infection. Methyl Thiazolyl Tetrazolium (MTT) assay was used to provide the reference data. We found that the results of the SPR and MTT assays were consistent, and SPR is a reliable tool in investigating virus-host cell interaction and the mechanism of action of viral inhibitors. SPR assay was more sensitive and accurate in the first hours of infection within the first replication cycle, whereas the MTT assay was not so effective. After the second replication cycle, noise was generated by the destruction of the cell layer and by the remnants of dead cells, and masks useful SPR signals.


Assuntos
Antivirais/uso terapêutico , Coronavirus Humano 229E/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/uso terapêutico , Ressonância de Plasmônio de Superfície/métodos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/isolamento & purificação , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Hidroxicloroquina/farmacologia , Cinética , Índice de Gravidade de Doença , Células Vero
7.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003353

RESUMO

Immobilization of proteins on a surface plasmon resonance (SPR) transducer is a delicate procedure since loss of protein bioactivity can occur upon contact with the untreated metal surface. Solution to the problem is the use of an immobilization matrix having a complex structure. However, this is at the expense of biosensor selectivity and sensitivity. It has been shown that the matrix-assisted pulsed laser evaporation (MAPLE) method has been successfully applied for direct immobilization (without a built-in matrix) of proteins, preserving their bioactivity. So far, MAPLE deposition has not been performed on a gold surface as required for SPR biosensors. In this paper we study the impact of direct immobilization of heme proteins (hemoglobin (Hb) and myoglobin (Mb)) on their bioactivity. For the purpose, Hb and Mb were directly immobilized by MAPLE technique on a SPR transducer. The bioactivity of the ligands immobilized in the above-mentioned way was assessed by SPR registration of the molecular reactions of various Hb/Mb functional groups. By SPR we studied the reaction between the beta chain of the Hb molecule and glucose, which shows the structural integrity of the immobilized Hb. A supplementary study of films deposited by FTIR and AFM was provided. The experimental facts showed that direct immobilization of an intact molecule was achieved.


Assuntos
Técnicas Biossensoriais , Hemoglobinas/análise , Proteínas Imobilizadas/análise , Mioglobina/análise , Ressonância de Plasmônio de Superfície , Ouro
8.
Data Brief ; 30: 105641, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32420429

RESUMO

Matrix-assisted pulsed laser evaporation (MAPLE) is an alternative and complimentary method to pulsed laser deposition. MAPLE has been demonstrated to be a less harmful approach for transporting and depositing delicate, highly sensitive molecules. Metalloproteins are considered sensitive molecules since their bioactivity is determined not only by their chemical structure but also by conformational changes that can be altered by deposition methods. Here we report a dataset of MAPLE deposition parameters of haemoglobin (Hb) that ensures the retention of its bioactivity. Methods for parameters optimization are also described. The data and analysis should be valuable for researchers interested in application of MAPLE techniques for metalloprotein immobilization since it provides a unique opportunity for direct immobilization. The data presents the results of previously conducted experiments on the basis of which is based the research article entitled "A Highly Efficient Biosensor based on MAPLE Deposited Hemoglobin on LPGs Around Phase Matching Turning Point" [1].

9.
Appl Opt ; 49(22): 4304-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20676187

RESUMO

We show that a broadband surface plasmon can be excited in a thin metal film. A train of two plasmons can be excited at conditions near the condition of broadband surface plasmon excitation. Also, a method for independent multichannel checks of biochips by wavelength addressing is proposed.


Assuntos
Análise em Microsséries , Ressonância de Plasmônio de Superfície , Colorimetria/métodos , Cristalização , Luminescência , Metais/química , Modelos Estatísticos , Radiação , Refratometria , Reprodutibilidade dos Testes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA