Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2384667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108501

RESUMO

Deficient (d) DNA mismatch repair (MMR) is a biomarker predictive of better response to PD-1 blockade immunotherapy in solid tumors. dMMR can be caused by mutations in MMR genes or by protein inactivation, which can be detected by sequencing and immunohistochemistry, respectively. To investigate the role of dMMR in diffuse large B-cell lymphoma (DLBCL), MMR gene mutations and expression of MSH6, MSH2, MLH1, and PMS2 proteins were evaluated by targeted next-generation sequencing and immunohistochemistry in a large cohort of DLBCL patients treated with standard chemoimmunotherapy, and correlated with the tumor immune microenvironment characteristics quantified by fluorescent multiplex immunohistochemistry and gene-expression profiling. The results showed that genetic dMMR was infrequent in DLBCL and was significantly associated with increased cancer gene mutations and favorable immune microenvironment, but not prognostic impact. Phenotypic dMMR was also infrequent, and MMR proteins were commonly expressed in DLBCL. However, intratumor heterogeneity existed, and increased DLBCL cells with phenotypic dMMR correlated with significantly increased T cells and PD-1+ T cells, higher average nearest neighbor distance between T cells and PAX5+ cells, upregulated immune gene signatures, LE4 and LE7 ecotypes and their underlying Ecotyper-defined cell states, suggesting the possibility that increased T cells targeted only tumor cell subsets with dMMR. Only in patients with MYC¯ DLBCL, high MSH6/PMS2 expression showed significant adverse prognostic effects. This study shows the immunologic and prognostic effects of genetic/phenotypic dMMR in DLBCL, and raises a question on whether DLBCL-infiltrating PD-1+ T cells target only tumor subclones, relevant for the efficacy of PD-1 blockade immunotherapy in DLBCL.


Assuntos
Reparo de Erro de Pareamento de DNA , Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Reparo de Erro de Pareamento de DNA/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Masculino , Feminino , Mutação , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Adulto , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Cancers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001501

RESUMO

The recurrence of diffuse large B-cell lymphoma (DLBCL) has been observed in 40% of cases. The standard of care for refractory/relapsed DLBCL (RR-DLBCL) is platinum-based treatment prior to autologous stem cell transplantation; however, the prognosis for RR-DLBCL patients remains poor. Thus, to identify genes affecting the cisplatin response in DLBCL, cisplatin-based whole-genome CRISPR-Cas9 knockout screens were performed in this study. We discovered DNA damage response (DDR) pathways as enriched among identified sensitizing CRISPR-mediated gene knockouts. In line, the knockout of the nucleotide excision repair genes XPA and ERCC6 sensitized DLBCL cells to platinum drugs irrespective of proliferation rate, thus documenting DDR as essential for cisplatin sensitivity in DLBCL. Functional analysis revealed that the loss of XPA and ERCC6 increased DNA damage levels and altered cell cycle distribution. Interestingly, we also identified BTK, which is involved in B-cell receptor signaling, to affect cisplatin response. The knockout of BTK increased cisplatin sensitivity in DLBCL cells, and combinatory drug screens revealed a synergistic effect of the BTK inhibitor, ibrutinib, with platinum drugs at low concentrations. Applying local and external DLBCL cohorts, we addressed the clinical relevance of the genes identified in the CRISPR screens. BTK was among the most frequently mutated genes with a frequency of 3-5%, and XPA and ERCC6 were also mutated, albeit at lower frequencies. Furthermore, 27-54% of diagnostic DLBCL samples had mutations in pathways that can sensitize cells to cisplatin. In conclusion, this study shows that XPA and ERCC6, in addition to BTK, are essential for the response to platinum-based drugs in DLBCL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA