RESUMO
mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live non-human primates (NHPs). Following i.m. injection, we observed LNPs distributing through injected muscle tissue, simultaneous with rapid trafficking to draining lymph nodes (dLNs). Deltoid injection of LNPs mimicking human vaccine administration led to stochastic LNP delivery to 3 different sets of dLNs. LNP uptake in dLNs was confirmed by histology, and cellular analysis of tissues via flow cytometry identified antigen-presenting cells as the primary cell type responsible for early LNP uptake and mRNA translation. These results provide insights into the biodistribution of mRNA vaccines administered at clinically relevant doses, injection volumes, and injection sites in an important large animal model for vaccine development.
RESUMO
Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.
Assuntos
Vacinas Anticâncer , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Linfócitos T , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
Immune stimulating complexes (ISCOMs) are safe and effective saponin-based adjuvants formed by the self-assembly of saponin, cholesterol, and phospholipids in water to form cage-like 30-40 nm diameter particles. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) in ISCOM particles yields a promising next-generation adjuvant termed Saponin-MPLA NanoParticles (SMNP). In this work, we detail protocols to produce ISCOMs or SMNP via a tangential flow filtration (TFF) process suitable for scalable synthesis and Good Manufacturing Practice (GMP) production of clinical-grade adjuvants. SMNP or ISCOM components were solubilized in micelles of the surfactant MEGA-10, then diluted below the critical micelle concentration (CMC) of the surfactant to drive ISCOM self-assembly. Assembly of ISCOM/SMNP particles using the purified saponin QS-21 used in clinical-grade saponin adjuvants was found to require controlled stepwise dilution of the initial micellar solution, to prevent formation of undesirable kinetically-trapped aggregate species. An optimized protocol gave yields of ~77% based on the initial feed of QS-21 and the final SMNP particle composition mirrored the feed ratios of the components. Further, samples were highly homogeneous with comparable quality to that of material prepared at lab scale by dialysis and purified via size-exclusion chromatography. This protocol may be useful for clinical preparation of ISCOM-based vaccine adjuvants and therapeutics.
RESUMO
We present an application of a socially assistive robotics (SAR) system in a therapeutic setting. We examine the amount of interaction elicited by the robot in a therapeutic setting with individuals post-stroke. We examine the role of various communication modalities, and their affects on the participants' responses. Seven participants of mild to moderate functional impairment due to stroke interacted with our SAR system during three sessions of motor task practice. The robot guided the users as they performed a wire puzzle task, while providing them with feedback about their performance. We evaluated the amount of verbalization and eye contact made with the robot. Our results indicate that users make eye contact more often than they verbalize when interacting with the robot. Further, user interactions are most frequent at the beginning of a practice session, and occur less frequently as the session progresses. When a user observes that the robot is not responding to a certain type of communication, the user limits the use of that communication modality. These insights should be useful in the design of future robot-based therapeutic interventions.