Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Infect Dis ; 73(1): e39-e46, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374822

RESUMO

BACKGROUND: Rapid blood culture diagnostics are of unclear benefit for patients with gram-negative bacilli (GNB) bloodstream infections (BSIs). We conducted a multicenter, randomized, controlled trial comparing outcomes of patients with GNB BSIs who had blood culture testing with standard-of-care (SOC) culture and antimicrobial susceptibility testing (AST) vs rapid organism identification (ID) and phenotypic AST using the Accelerate Pheno System (RAPID). METHODS: Patients with positive blood cultures with Gram stains showing GNB were randomized to SOC testing with antimicrobial stewardship (AS) review or RAPID with AS. The primary outcome was time to first antibiotic modification within 72 hours of randomization. RESULTS: Of 500 randomized patients, 448 were included (226 SOC, 222 RAPID). Mean (standard deviation) time to results was faster for RAPID than SOC for organism ID (2.7 [1.2] vs 11.7 [10.5] hours; P < .001) and AST (13.5 [56] vs 44.9 [12.1] hours; P < .001). Median (interquartile range [IQR]) time to first antibiotic modification was faster in the RAPID arm vs the SOC arm for overall antibiotics (8.6 [2.6-27.6] vs 14.9 [3.3-41.1] hours; P = .02) and gram-negative antibiotics (17.3 [4.9-72] vs 42.1 [10.1-72] hours; P < .001). Median (IQR) time to antibiotic escalation was faster in the RAPID arm vs the SOC arm for antimicrobial-resistant BSIs (18.4 [5.8-72] vs 61.7 [30.4-72] hours; P = .01). There were no differences between the arms in patient outcomes. CONCLUSIONS: Rapid organism ID and phenotypic AST led to faster changes in antibiotic therapy for gram-negative BSIs. CLINICAL TRIALS REGISTRATION: NCT03218397.


Assuntos
Bacteriemia , Infecções por Bactérias Gram-Negativas , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Hemocultura , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana
4.
J Clin Microbiol ; 55(9): 2817-2826, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28701418

RESUMO

Culture of periprosthetic tissue specimens in blood culture bottles is more sensitive than conventional techniques, but the impact on laboratory workflow has yet to be addressed. Herein, we examined the impact of culture of periprosthetic tissues in blood culture bottles on laboratory workflow and cost. The workflow was process mapped, decision tree models were constructed using probabilities of positive and negative cultures drawn from our published study (T. N. Peel, B. L. Dylla, J. G. Hughes, D. T. Lynch, K. E. Greenwood-Quaintance, A. C. Cheng, J. N. Mandrekar, and R. Patel, mBio 7:e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15), and the processing times and resource costs from the laboratory staff time viewpoint were used to compare periprosthetic tissues culture processes using conventional techniques with culture in blood culture bottles. Sensitivity analysis was performed using various rates of positive cultures. Annualized labor savings were estimated based on salary costs from the U.S. Labor Bureau for Laboratory staff. The model demonstrated a 60.1% reduction in mean total staff time with the adoption of tissue inoculation into blood culture bottles compared to conventional techniques (mean ± standard deviation, 30.7 ± 27.6 versus 77.0 ± 35.3 h per month, respectively; P < 0.001). The estimated annualized labor cost savings of culture using blood culture bottles was $10,876.83 (±$337.16). Sensitivity analysis was performed using various rates of culture positivity (5 to 50%). Culture in blood culture bottles was cost-effective, based on the estimated labor cost savings of $2,132.71 for each percent increase in test accuracy. In conclusion, culture of periprosthetic tissue in blood culture bottles is not only more accurate than but is also cost-saving compared to conventional culture methods.


Assuntos
Artroplastia/efeitos adversos , Técnicas Bacteriológicas/economia , Técnicas Bacteriológicas/métodos , Pessoal de Laboratório Médico/economia , Próteses e Implantes/microbiologia , Técnicas de Cultura de Tecidos/economia , Técnicas de Cultura de Tecidos/métodos , Hemocultura , Análise Custo-Benefício , Árvores de Decisões , Humanos , Fluxo de Trabalho
5.
J Clin Microbiol ; 55(1): 234-243, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27807152

RESUMO

We recently demonstrated improved sensitivity of prosthetic joint infection (PJI) diagnosis using an automated blood culture bottle system for periprosthetic tissue culture [T. N. Peel et al., mBio 7(1):e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15]. This study builds on the prior research by examining the optimal number of periprosthetic tissue specimens required for accurate PJI diagnosis. Current guidelines recommend five to six, which is impractical. We applied Bayesian latent class modeling techniques for estimating diagnostic test properties of conventional culture techniques (aerobic and anaerobic agars and thioglycolate broth) compared to inoculation into blood culture bottles. Conventional, frequentist receiver operating characteristic curve analysis was conducted as a sensitivity analysis. The study was conducted at Mayo Clinic, Rochester, MN, from August 2013 through April 2014 and included 499 consecutive patients undergoing revision arthroplasty from whom 1,437 periprosthetic tissue samples were collected and processed. For conventional periprosthetic tissue culture techniques, the greatest accuracy was observed when four specimens were obtained (91%; 95% credible interval, 77 to 100%), whereas when using inoculation of periprosthetic tissues into blood culture bottles, the greatest accuracy of diagnosis was observed when three specimens were cultured (92%; 95% credible intervals, 79 to 100%). Results of this study show that the greatest accuracy of PJI diagnosis is obtained when three periprosthetic tissue specimens are obtained and inoculated into blood culture bottles or four periprosthetic tissue specimens are obtained and cultured using standard plate and broth cultures. Increasing the number of specimens to five or more, per current recommendations, does not improve accuracy of PJI diagnosis.


Assuntos
Artrite/diagnóstico , Técnicas Microbiológicas/métodos , Infecções Relacionadas à Prótese/diagnóstico , Manejo de Espécimes/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade
6.
Diagn Microbiol Infect Dis ; 85(3): 372-376, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27179368

RESUMO

With the advent of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), most Gram-positive rods (GPRs) are readily identified; however, their clinical relevance in blood cultures remains unclear. Herein, we assessed the clinical significance of GPRs isolated from blood and identified in the era of MALDI-TOF MS. A retrospective chart review of patients presenting to the Mayo Clinic, Rochester, MN, from January 1, 2013, to October 13, 2015, was performed. Any episode of a positive blood culture for a GPR was included. We assessed the number of bottles positive for a given isolate, time to positivity of blood cultures, patient age, medical history, interpretation of culture results by the healthcare team and whether infectious diseases consultation was obtained. We also evaluated the susceptibility profiles of a larger collection of GPRs tested in the clinical microbiology laboratory of the Mayo Clinic, Rochester, MN from January 1, 2013, to October 31, 2015. There were a total of 246 GPRs isolated from the blood of 181 patients during the study period. 56% (n = 101) were deemed contaminants by the healthcare team and were not treated; 33% (n = 59) were clinically determined to represent true bacteremia and were treated; and 8% (n = 14) were considered of uncertain significance, with patients prescribed treatment regardless. Patient characteristics associated with an isolate being treated on univariate analysis included younger age (P = 0.02), identification to the species level (P = 0.02), higher number of positive blood culture sets (P < 0.0001), lower time to positivity (P < 0.0001), immunosuppression (P = 0.03), and recommendation made by an infectious disease consultant (P = 0.0005). On multivariable analysis, infectious diseases consultation (P = 0.03), higher number of positive blood culture sets (P = 0.0005) and lower time to positivity (P = 0.03) were associated with an isolate being treated. 100, 83, 48 and 34% of GPRs were susceptible to vancomycin, meropenem, penicillin and ceftriaxone, respectively.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/microbiologia , Sangue/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Bacilos Gram-Positivos/efeitos dos fármacos , Bacilos Gram-Positivos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Bacilos Gram-Positivos/química , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos
7.
mBio ; 7(1): e01776-15, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26733067

RESUMO

UNLABELLED: Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs) is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM) in addition to applying the Infectious Diseases Society of America (IDSA) criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014) at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32%) met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively); this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003). The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001), with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster. IMPORTANCE: Prosthetic joint infections are a devastating complication of arthroplasty surgery. Despite this, current microbiological techniques to detect and diagnose infections are imperfect. This study examined a new approach to diagnosing infections, through the inoculation of tissue samples from around the prosthetic joint into blood culture bottles. This study demonstrated that, compared to current laboratory practices, this new technique increased the detection of infection. These findings are important for patient care to allow timely and accurate diagnosis of infection.


Assuntos
Artrite/diagnóstico , Artrite/microbiologia , Técnicas Microbiológicas/métodos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Manejo de Espécimes/métodos , Aerobiose , Anaerobiose , Automação Laboratorial/métodos , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade , Fatores de Tempo
8.
Diagn Microbiol Infect Dis ; 81(3): 163-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533615

RESUMO

Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients with prosthetic joints, providing species-level identification that may inform culture interpretation of pathogens versus contaminants.


Assuntos
Artrite/diagnóstico , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Técnicas de Laboratório Clínico/métodos , Infecções Relacionadas à Prótese/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/química , Bactérias/classificação , Infecções Bacterianas/microbiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Minnesota , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA