Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1249581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885896

RESUMO

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling. Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36). Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1ß responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1ß-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals. Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Fator de Necrose Tumoral alfa , Interleucina-2 , Interleucina-6 , Citocinas , Imunidade Inata
2.
Front Immunol ; 13: 886698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812430

RESUMO

Q fever is a zoonotic disease caused by the highly infectious Gram-negative coccobacillus, Coxiella burnetii (C. burnetii). The Q fever vaccine Q-VAX® is characterised by high reactogenicity, requiring individuals to be pre-screened for prior exposure before vaccination. To date it remains unclear whether vaccine side effects in pre-exposed individuals are associated with pre-existing adaptive immune responses to C. burnetii or are also a function of innate responses to Q-VAX®. In the current study, we measured innate and adaptive cytokine responses to C. burnetii and compared these among individuals with different pre-exposure status. Three groups were included: n=98 Dutch blood bank donors with unknown exposure status, n=95 Dutch village inhabitants with known natural exposure status to C. burnetii during the Dutch Q fever outbreak of 2007-2010, and n=96 Australian students receiving Q-VAX® vaccination in 2021. Whole blood cytokine responses following ex vivo stimulation with heat-killed C. burnetii were assessed for IFNγ, IL-2, IL-6, IL-10, TNFα, IL-1ß, IP-10, MIP-1α and IL-8. Serological data were collected for all three cohorts, as well as data on skin test and self-reported vaccine side effects and clinical symptoms during past infection. IFNγ, IP-10 and IL-2 responses were strongly elevated in individuals with prior C. burnetii antigen exposure, whether through infection or vaccination, while IL-1ß, IL-6 and TNFα responses were slightly increased in naturally exposed individuals only. High dimensional analysis of the cytokine data identified four clusters of individuals with distinct cytokine response signatures. The cluster with the highest levels of adaptive cytokines and antibodies comprised solely individuals with prior exposure to C. burnetii, while another cluster was characterized by high innate cytokine production and an absence of C. burnetii-induced IP-10 production paired with high baseline IP-10 levels. Prior exposure status was partially associated with these signatures, but could not be clearly assigned to a single cytokine response signature. Overall, Q-VAX® vaccination and natural C. burnetii infection were associated with comparable cytokine response signatures, largely driven by adaptive cytokine responses. Neither individual innate and adaptive cytokine responses nor response signatures were associated retrospectively with clinical symptoms during infection or prospectively with side effects post-vaccination.


Assuntos
Coxiella burnetii , Febre Q , Austrália , Quimiocina CXCL10 , Citocinas , Humanos , Interleucina-2 , Interleucina-6 , Estudos Retrospectivos , Fator de Necrose Tumoral alfa , Vacinação/efeitos adversos
3.
Virulence ; 13(1): 890-902, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35587156

RESUMO

Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020. One hundred and twenty-four participants were classified into five groups: previously exposed but without evidence of infection, having no known exposure or evidence of infection, seroconverted without symptoms, previously diagnosed with symptomatic COVID-19, and recovered after hospitalization with COVID-19. Prevalence of IgGs specific to the following antigens was compared between the five groups: recombinant SARS-CoV-2 and betacoronavirus spike and nucleocapsid protein domains, peptides from a tiled array of 22-mers corresponding to the entire spike and nucleocapsid proteins, and peptides corresponding to predicted immunogenic regions from other proteins of SARS-CoV-2. Antibody abundance generally correlated positively with severity of prior illness. A number of specific immunogenic peptides and some that may be associated with milder illness or protection from symptomatic infection were identified. No convincing association was observed between antibodies to Receptor Binding Domain(s) (RBDs) of less pathogenic betacoronaviruses HKU1 or OC43 and COVID-19 severity. However, apparent cross-reaction with SARS-CoV RBD was evident and some predominantly asymptomatic individuals had antibodies to both MERS-CoV and SARS-CoV RBDs. Findings from this pilot study may inform development of diagnostics, vaccines, and therapeutic antibodies, and provide insight into viral pathogenic mechanisms.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Projetos Piloto , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
4.
Nucleic Acids Res ; 50(8): 4450-4463, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394046

RESUMO

Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.


Assuntos
Neoplasias , RNA Polimerase II , Animais , Humanos , Masculino , Mamíferos/genética , Complexo Mediador/metabolismo , Subunidade 1 do Complexo Mediador/genética , Neoplasias/genética , Fosforilação , RNA Polimerase II/metabolismo , Transcrição Gênica
5.
J Clin Invest ; 127(4): 1451-1462, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240605

RESUMO

Obesity causes insulin resistance, and PPARγ ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPARγ. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPARγ binding and gene expression that were preserved in the iWAT of B6x129 F1-intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.


Assuntos
Epigênese Genética , Obesidade/metabolismo , PPAR gama/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Ligação Proteica , Elementos Reguladores de Transcrição , Rosiglitazona , Gordura Subcutânea Abdominal/metabolismo , Tiazolidinedionas/farmacologia , Ativação Transcricional , Transcriptoma , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Mol Oncol ; 9(2): 365-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25306391

RESUMO

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two human gammaherpesviruses associated with a broad spectrum of B-cell lymphomas, most acutely in immuno-compromised populations. However, there are no drugs which specifically target KSHV or EBV-associated lymphomas. To identify small molecules which selectively inhibit the growth of EBV or KSHV-associated B-cell lines, we performed a fluorescence based high-throughput screen on multiple stable GFP expressing virus-infected or uninfected B-cell lines. We identified 40 initial compounds with selective growth inhibition and subsequently determined the 50% growth inhibitory concentrations (GI50) for each drug. We further examined compounds with higher specificity to explore the underlying molecular mechanisms using transcription factor analysis, as well as a shRNA based knockdown strategy. Our data identified ten compounds with relatively high efficacy for growth inhibition. Two novel small molecules, NSC#10010 and NSC#65381 were potent growth inhibitors for gammaherpesvirus-associated B-lymphomas through activation of both the NF-κB and c-Myc-mediated signaling pathways. These drugs can serve as potential lead compounds to expand the current therapeutic window against EBV or KSHV-associated human B-cell malignancies.


Assuntos
Antineoplásicos , Antivirais , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Linfoma de Células B/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA