Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(1-1): 013203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780312

RESUMO

The self-diffusion phenomenon in a two-dimensional dusty plasma at extremely strong (effective) magnetic fields is studied experimentally and by means of molecular dynamics simulations. In the experiment the high magnetic field is introduced by rotating the particle cloud and observing the particle trajectories in a corotating frame, which allows reaching effective magnetic fields up to 3000 T. The experimental results confirm the predictions of the simulations: (i) superdiffusive behavior is found at intermediate timescales and (ii) the dependence of the self-diffusion coefficient on the magnetic field is well reproduced.

2.
Phys Rev E ; 93(6): 063209, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415379

RESUMO

The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24730953

RESUMO

We investigate the effect of an external magnetic field on the velocity autocorrelation function and the "caging" of the particles in a two-dimensional strongly coupled Yukawa liquid, via numerical simulations. The influence of the coupling strength on the position of the dominant peak in the frequency spectrum of the velocity autocorrelation function confirms the onset of a joint effect of the magnetic field and strong correlations at high coupling. Our molecular dynamics simulations quantify the decorrelation of the particles' surroundings: the magnetic field is found to increase significantly the caging time, which reaches values well beyond the time scale of plasma oscillations. The observation of the increased caging time is in accordance with findings that the magnetic field decreases diffusion in similar systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA