Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933063

RESUMO

The application of double perovskite cobaltites BaLnCo2O6-δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6-δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS). The results indicate that all three compositions maintain mainly orthorhombic structure from RT to 1000 °C. Chemical expansion from Co reduction and formation of oxygen vacancies is observed and characterized above 350 °C. Following XAS experiments, the high spin of Co was ascertained in the whole range of temperatures for BLC, BPC, and BNC.

2.
Dalton Trans ; 49(31): 10839-10850, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32705110

RESUMO

The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells linearly increases with increase in yttrium niobate content. The water uptake increases with (x) and the protonic defect concentration reaches almost 4.5 × 10-3 mol mol-1 at 300 °C. The calculated enthalpy of formation from oxides suggests strong stability for all of the compositions, with the values of enthalpy ranging from -84.6 to -114.3 kJ mol-1. The total conductivity does not have a visible dependence on Y3NbO7 content. For each compound, the total conductivity is higher in wet air. Interestingly, for samples where x < 0.5, the ratio of conductivity in hydrogen to air increases with increasing temperature, while for x > 0.5, the trend is the opposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA