Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(5): 1006-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658793

RESUMO

Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.


Assuntos
Produtos Agrícolas , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Produtos Agrícolas/genética , Panicum/genética , Fenótipo , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Domesticação , Genômica/métodos , Melhoramento Vegetal
2.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240079

RESUMO

Dirigent proteins (DIRs) contribute to plant fitness by dynamically reorganizing the cell wall and/or by generating defense compounds during plant growth, development, and interactions with environmental stresses. ZmDRR206 is a maize DIR, it plays a role in maintaining cell wall integrity during seedling growth and defense response in maize, but its role in regulating maize kernel development is unclear. Association analysis of candidate genes indicated that the natural variations of ZmDRR206 were significantly associated with maize hundred-kernel weight (HKW). ZmDRR206 plays a dominant role in storage nutrient accumulation in endosperm during maize kernel development, ZmDRR206 overexpression resulted in small and shrunken maize kernel with significantly reduced starch content and significantly decreased HKW. Cytological characterization of the developing maize kernels revealed that ZmDRR206 overexpression induced dysfunctional basal endosperm transfer layer (BETL) cells, which were shorter with less wall ingrowth, and defense response was constitutively activated in developing maize kernel at 15 and 18 DAP by ZmDRR206 overexpression. The BETL-development-related genes and auxin signal-related genes were down-regulated, while cell wall biogenesis-related genes were up-regulated in developing BETL of the ZmDRR206-overexpressing kernel. Moreover, the developing ZmDRR206-overexpressing kernel had significantly reduced contents of the cell wall components such as cellulose and acid soluble lignin. These results suggest that ZmDRR206 may play a regulatory role in coordinating cell development, storage nutrient metabolism, and stress responses during maize kernel development through its role in cell wall biogenesis and defense response, and provides new insights into understanding the mechanisms of kernel development in maize.


Assuntos
Endosperma , Zea mays , Endosperma/genética , Endosperma/metabolismo , Zea mays/metabolismo , Amido/metabolismo , Ácidos Indolacéticos/metabolismo , Diferenciação Celular/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plants (Basel) ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771763

RESUMO

Improving the density tolerance and planting density has great importance for increasing maize production. The key to promoting high density planting is breeding maize with a compact canopy architecture, which is mainly influenced by the angles of the leaves and tassel branches above the ear. It is still unclear whether the leaf angles of different stem nodes and tassel branches are controlled by similar genetic regulatory mechanisms, which limits the ability to breed for density-tolerant maize. Here, we developed a population with 571 double haploid lines derived from inbred lines, PHBA6 and Chang7-2, showing significant differences in canopy architecture. Phenotypic and QTL analyses revealed that the genetic regulation mechanism was largely similar for closely adjacent leaves above the ears. In contrast, the regulation mechanisms specifying the angles of distant leaves and the angles of leaves vs. tassel branches are largely different. The liguless1 gene was identified as a candidate gene for QTLs co-regulating the angles of different leaves and the tassel branch, consistent with its known roles in regulating plant architecture. Our findings can be used to develop strategies for the improvement of leaf and tassel architecture through the introduction of trait-specific or pleiotropic genes, thus benefiting the breeding of maize with increased density tolerance in the future.

4.
Plant Physiol ; 191(4): 2316-2333, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652388

RESUMO

Carbon and nitrogen are the two main nutrients in maize (Zea mays L.) kernels, and kernel filling and metabolism determine seed formation and germination. However, the molecular mechanisms underlying the relationship between kernel filling and corresponding carbon and nitrogen metabolism remain largely unknown. Here, we found that HEAT SHOCK PROTEIN 90.6 (HSP90.6) is involved in both seed filling and the metabolism processes of carbon and nitrogen. A single-amino acid mutation within the HATPase_c domain of HSP90.6 led to small kernels. Transcriptome profiling showed that the expression of amino acid biosynthesis- and carbon metabolism-related genes was significantly downregulated in the hsp90.6 mutant. Further molecular evidence showed strong interactions between HSP90.6 and the 26S proteasome subunits REGULATORY PARTICLE NON-ATPASE6 (RPN6) and PROTEASOME BETA SUBUNITD2 (PBD2). The mutation of hsp90.6 significantly reduced the activity of the 26S proteasome, resulting in the accumulation of ubiquitinated proteins and defects in nitrogen recycling. Moreover, we verified that HSP90.6 is involved in carbon metabolism through interacting with the 14-3-3 protein GENERAL REGULATORY FACTOR14-4 (GF14-4). Collectively, our findings revealed that HSP90.6 is involved in seed filling and development by interacting with the components controlling carbon and nitrogen metabolism.


Assuntos
Carbono , Sementes , Carbono/metabolismo , Sementes/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Proteínas de Choque Térmico/metabolismo , Zea mays/metabolismo
5.
BMC Genomics ; 23(1): 593, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971070

RESUMO

BACKGROUND: Maize kernel row number (KRN) is one of the most important yield traits and has changed greatly during maize domestication and selection. Elucidating the genetic basis of KRN will be helpful to improve grain yield in maize. RESULTS: Here, we measured KRN in four environments using a nested association mapping (NAM) population named HNAU-NAM1 with 1,617 recombinant inbred lines (RILs) that were derived from 12 maize inbred lines with a common parent, GEMS41. Then, five consensus quantitative trait loci (QTLs) distributing on four chromosomes were identified in at least three environments along with the best linear unbiased prediction (BLUP) values by the joint linkage mapping (JLM) method. These QTLs were further validated by the separate linkage mapping (SLM) and genome-wide association study (GWAS) methods. Three KRN genes cloned through the QTL assay were found in three of the five consensus QTLs, including qKRN1.1, qKRN2.1 and qKRN4.1. Two new QTLs of KRN, qKRN4.2 and qKRN9.1, were also identified. On the basis of public RNA-seq and genome annotation data, five genes highly expressed in ear tissue were considered candidate genes contributing to KRN. CONCLUSIONS: This study carried out a comprehensive analysis of the genetic architecture of KRN by using a new NAM population under multiple environments. The present results provide solid information for understanding the genetic components underlying KRN and candidate genes in qKRN4.2 and qKRN9.1. Single-nucleotide polymorphisms (SNPs) closely linked to qKRN4.2 and qKRN9.1 could be used to improve inbred yield during molecular breeding in maize.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Fenótipo , Zea mays/genética
6.
Nat Plants ; 7(12): 1579-1588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887519

RESUMO

Doubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.


Assuntos
Haploidia , Mutação com Perda de Função , Fosfolipase D/genética , Zea mays , Alelos , Genes de Plantas , Pólen/genética , Zea mays/enzimologia , Zea mays/genética
7.
Front Plant Sci ; 12: 724133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868109

RESUMO

It is of critical importance for plants to correctly and efficiently allocate their resources between growth and defense to optimize fitness. Transcription factors (TFs) play crucial roles in the regulation of plant growth and defense response. Trihelix TFs display multifaceted functions in plant growth, development, and responses to various biotic and abiotic stresses. In our previous investigation of maize stalk rot disease resistance mechanism, we found a trihelix TF gene, ZmGT-3b, which is primed for its response to Fusarium graminearum challenge by implementing a rapid and significant reduction of its expression to suppress seedling growth and enhance disease resistance. The disease resistance to F. graminearum was consistently increased and drought tolerance was improved, while seedling growth was suppressed and photosynthesis activity was significantly reduced in the ZmGT-3b knockdown seedlings. Thus, the seedlings finally led to show a kind of growth-defense trade-off phenotype. Moreover, photosynthesis-related genes were specifically downregulated, especially ZmHY5, which encodes a conserved central regulator of seedling development and light responses; ZmGT-3b was confirmed to be a novel interacting partner of ZmHY5 in yeast and in planta. Constitutive defense responses were synchronically activated in the ZmGT-3b knockdown seedlings as many defense-related genes were significantly upregulated, and the contents of major cell wall components, such as lignin, were increased in the ZmGT-3b knockdown seedlings. These suggest that ZmGT-3b is involved in the coordination of the metabolism during growth-defense trade-off by optimizing the temporal and spatial expression of photosynthesis- and defense-related genes.

8.
New Phytol ; 232(6): 2384-2399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559890

RESUMO

Maize kernel weight is influenced by the unloading of nutrients from the maternal placenta and their passage through the transfer tissue of the basal endosperm transfer layer (BETL) and the basal intermediate zone (BIZ) to the upper part of the endosperm. Here, we show that Small kernel 10 (Smk10) encodes a choline transporter-like protein 1 (ZmCTLP1) that facilitates choline uptake and is located in the trans-Golgi network (TGN). Its loss of function results in reduced choline content, leading to smaller kernels with a lower starch content. Mutation of ZmCTLP1 disrupts membrane lipid homeostasis and the normal development of wall in-growths. Expression levels of Mn1 and ZmSWEET4c, two kernel filling-related genes, are downregulated in the smk10, which is likely to be one of the major causes of incompletely differentiated transfer cells. Mutation of ZmCTLP1 also reduces the number of plasmodesmata (PD) in transfer cells, indicating that the smk10 mutant is impaired in PD formation. Intriguingly, we also observed premature cell death in the BETL and BIZ of the smk10 mutant. Together, our results suggest that ZmCTLP1-mediated choline transport affects kernel development, highlighting its important role in lipid homeostasis, wall in-growth formation and PD development in transfer cells.


Assuntos
Endosperma , Zea mays , Homeostase , Lipídeos , Proteínas de Plantas/genética , Zea mays/genética
9.
J Integr Plant Biol ; 62(10): 1607-1624, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32129568

RESUMO

Water transport from roots to leaves through xylem is important for plant growth and development. Defects in water transport can cause drought stress, even when there is adequate water in the soil. Here, we identified the maize (Zea mays) wilty5 (wi5) mutant, which exhibits marked dwarfing and leaf wilting throughout most of its life cycle under normal growth conditions. wilty5 seedlings exhibited lower xylem conductivity and wilted more rapidly under drought, NaCl, and high temperature treatments than wild-type plants. Map-based cloning revealed that WI5 encodes an active endo-1,4-ß-xylanase from glycosyl dehydration family 10, which mainly functions in degrading and reorganizing cell wall xylan. Reverse-transcription polymerase chain reaction and ß-glucuronidase assays revealed that WI5 is highly expressed in stems, especially in internodes undergoing secondary wall assembly. RNA sequencing suggested that WI5 plays a unique role in internode growth. Immunohistochemistry and electron microscopy confirmed that wi5 is defective in xylan deposition and secondary cell wall thickening. Lignin deposition and xylan content were markedly reduced in wi5 compared to the wild-type plants. Our results suggest that WI5 functions in xylem cell wall thickening through its xylanase activity and thereby regulates xylem water transport, the drought stress response, and plant growth in maize.


Assuntos
Parede Celular/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Água/metabolismo , Xilema/metabolismo , Zea mays/metabolismo , Endo-1,4-beta-Xilanases/genética , Regulação da Expressão Gênica de Plantas , Xilanos/metabolismo
10.
Front Plant Sci ; 9: 101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487604

RESUMO

Leaf width (LW) influences canopy architecture of population-cultured maize and can thus contribute to density breeding. In previous studies, almost all maize LW-related mutants have extreme effect on leaf development or accompanied unfavorable phenotypes. In addition, the identification of quantitative trait loci (QTLs) has been resolution-limited, with cloning and fine-mapping rarely performed. Here, we constructed a bin map for 670 recombinant inbred lines (RILs) using ∼1.2 billion 100-bp re-sequencing reads. QTL analysis of the LW trait directly narrowed the major effect QTL, qLW4, to a ∼270-kb interval. A fine-mapping population and near-isogenic lines (NILs) were quickly constructed using a key RIL harboring heterozygous genotypes across the qLW4 region. A recombinant-derived progeny testing strategy was subsequently used to further fine-map qLW4 to a 55-kb interval. Examination of NILs revealed that qLW4 has a completely dominant effect on LW, with no additional effect on leaf length. Candidate gene analysis suggested that this locus may be a novel LW controlling allele in maize. Our findings demonstrate the advantage of large-population high-density bin mapping, and suggest a strategy for efficiently fine-mapping or even cloning of QTLs. These results should also be helpful for further dissection of the genetic mechanism of LW variation, and benefit maize density breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA