Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Daru ; 28(1): 139-157, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31942695

RESUMO

BACKGROUND: Arginine-vasopressin (AVP) is a neuropeptide and provides learning and memory modulation. The AVP (4-5) dipeptide corresponds to the N-terminal fragment of the major vasopressin metabolite AVP (4-9), has a neuroprotective effect and used in the treatment of Alzheimer's and Parkinson's disease. METHODS: The main objective of the present study is to evaluate the molecular mechanism of AVP (4-5) dipeptide and to develop and synthesize chitosan nanoparticle formulation using modified version of ionic gelation method, to increase drug effectiveness. For peptide loaded chitosan nanoparticles, the synthesized experiment medium was simulated for the first time by molecular dynamics method and used to determine the stability of the peptide, and the binding mechanism to protein (HSP70) was also investigated by molecular docking calculations. A potential pharmacologically features of the peptide was also characterized by ADME (Absorption, Distribution, Metabolism and Excretion) analysis. The characterization, in vitro release study, encapsulation efficiency and loading capacity of the peptide loaded chitosan nanoparticles (CS NPs) were performed by Dynamic Light Scattering (DLS), UV-vis absorption (UV), Scanning Electron Microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy techniques. Additionally, in vitro cytotoxicity of the peptide on human neuroblastoma cells (SH-SY5Y) was examined with XTT assay and the statistical analysis was evaluated. RESULTS: The results showed that; hydrodynamic size, zeta potential and polydispersity index (PdI) of the peptide-loaded CS NPs were 167.6 nm, +13.2 mV, and 0.211, respectively. In vitro release study of the peptide-loaded CS NPs showed that 17.23% of the AVP (4-5)-NH2 peptide was released in the first day, while 61.13% of AVP (4-5)-NH2 peptide was released in the end of the 10th day. The encapsulation efficiency and loading capacity were 99% and 10%, respectively. According to the obtained results from XTT assay, toxicity on SHSY-5Y cells in the concentration from 0.01 µg/µL to 30 µg/µL were evaluated and no toxicity was observed. Also, neuroprotective effect was showed against H2O2 treatment. CONCLUSION: The experimental medium of peptide-loaded chitosan nanoparticles was created for the first time with in silico system and the stability of the peptide in this medium was carried out by molecular dynamics studies. The binding sites of the peptide with the HSP70 protein were determined by molecular docking analysis. The size and morphology of the prepared NPs capable of crossing the blood-brain barrier (BBB) were monitored using DLS and SEM analyses, and the encapsulation efficiency and loading capacity were successfully performed with UV Analysis. In vitro release studies and in vitro cytotoxicity analysis on SHSY-5Y cell lines of the peptide were conducted for the first time. Grapical abstract.


Assuntos
Arginina Vasopressina , Quitosana , Nanopartículas , Fármacos Neuroprotetores , Peptídeos , Arginina Vasopressina/administração & dosagem , Arginina Vasopressina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/química , Desenho de Fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Peptídeos/administração & dosagem , Peptídeos/química
2.
J Biomol Struct Dyn ; 37(10): 2515-2526, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30052130

RESUMO

CLTOAB is an ammonium-based ionic liquid composed of ε-Caprolactam (CL) C6H11NO and tetraoctylammonium bromide (TOAB) (C32H68BrN). In this study, experimental IR and Raman spectra of CLTOAB ionic liquid together with the computational results of the compound have been reported. The optimized geometry, vibrational frequencies, IR intensities and Raman activities of the CLTOAB were calculated using the wb97xd and B3LYP density functional methods combined with the 6-31G(d,p) basis set using Gaussian 03 program. The complete assignment of the bands was performed based on the potential energy distributions (PED%). The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The Gauge-including atomic orbital 1H-NMR and 13C-NMR chemical shifts calculations were carried out and compared with the experimental data. Furthermore to evaluate interaction between CLTOAB and DNA, molecular docking study was carried out. Communicated by Ramaswamy H. Sarma.


Assuntos
Compostos de Amônio/química , Líquidos Iônicos/química , Modelos Moleculares , Vibração , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Eletricidade Estática
3.
PeerJ ; 6: e4270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404207

RESUMO

BACKGROUND: N-acetylcarnosine (NAC), a dipeptide with powerful antioxidant properties that is extensively used as a pharmaceutical prodrug for the treatment of cataract and acute gastric disease, was investigated by molecular dynamics with the GROMACS program in order to understand the solvent effect on peptide conformation of the peptide molecule used as a component of a drug and which presents substantial information on where drug molecules bind and how they exert their effects. Besides, molecular docking simulation was performed by using the AutoDock Vina program which identify the kind of interaction between the drug and proteins. A delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with NAC (NAC-PLGA-NPs) for the treatment of cataract was prepared for the first time in this study in order to enhance drug bioavailability and biocompatibility. The objective of this work was to prepare and evaluate the structural formulation, characterization, and cytotoxicity studies of NAC-loaded NPs based on PLGA for cataract treatment. METHODS: PLGA and NAC-loaded PLGA NPs were prepared using the double emulsion (w/o/w) method, and characterizations of the NPs were carried out with UV-Vis spectrometer to determine drug concentration, the Zeta-sizer system to analyze size and zeta potential, FTIR spectrometer to determine the incorporation of drug and PLGA, and TEM analysis for morphological evaluation. RESULTS: NAC-loaded PLGA NPs were successfully obtained according to UV-Vis and FTIR spectroscopy, Zeta-sizer system. And it was clearly observed from the TEM analysis that the peptide-loaded NPs had spherical and non-aggregated morphology. Also, the NPs had low toxicity at lower concentrations, and toxicity was augmented by increasing the concentration of the drug. DISCUSSION: The NAC molecule, which has been investigated as a drug molecule due to its antioxidant and oxidative stress-reducing properties, especially in cataract treatment, was encapsulated with a PLGA polymer in order to increase drug bioavailability. This study may contribute to the design of drugs for cataract treatment with better reactivity and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA