Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 501(7467): 385-90, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23995689

RESUMO

ß-barrel membrane proteins are essential for nutrient import, signalling, motility and survival. In Gram-negative bacteria, the ß-barrel assembly machinery (BAM) complex is responsible for the biogenesis of ß-barrel membrane proteins, with homologous complexes found in mitochondria and chloroplasts. Here we describe the structure of BamA, the central and essential component of the BAM complex, from two species of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi. BamA consists of a large periplasmic domain attached to a 16-strand transmembrane ß-barrel domain. Three structural features shed light on the mechanism by which BamA catalyses ß-barrel assembly. First, the interior cavity is accessible in one BamA structure and conformationally closed in the other. Second, an exterior rim of the ß-barrel has a distinctly narrowed hydrophobic surface, locally destabilizing the outer membrane. And third, the ß-barrel can undergo lateral opening, suggesting a route from the interior cavity in BamA into the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Haemophilus/química , Neisseria gonorrhoeae/química , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagênese , Conformação Proteica , Homologia Estrutural de Proteína
2.
Nature ; 483(7387): 53-8, 2012 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-22327295

RESUMO

Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.


Assuntos
Proteínas de Bactérias/química , Ferro/metabolismo , Neisseria/metabolismo , Proteína A de Ligação a Transferrina/química , Proteína A de Ligação a Transferrina/metabolismo , Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Transporte Biológico , Bovinos , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Neisseria/patogenicidade , Conformação Proteica , Espalhamento a Baixo Ângulo , Especificidade da Espécie , Relação Estrutura-Atividade , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestrutura , Proteína A de Ligação a Transferrina/ultraestrutura , Proteína B de Ligação a Transferrina/ultraestrutura , Difração de Raios X
3.
J Mol Biol ; 415(1): 128-42, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22094314

RESUMO

Autotransporters are secreted proteins produced by pathogenic Gram-negative bacteria. They consist of a membrane-embedded ß-domain and an extracellular passenger domain that is sometimes cleaved and released from the cell surface. We solved the structures of three noncleavable mutants of the autotransporter EspP to examine how it promotes asparagine cyclization to cleave its passenger. We found that cyclization is facilitated by multiple factors. The active-site asparagine is sterically constrained to conformations favorable for cyclization, while electrostatic interactions correctly orient the carboxamide group for nucleophilic attack. During molecular dynamics simulations, water molecules were observed to enter the active site and to form hydrogen bonds favorable for increasing the nucleophilicity of the active-site asparagine. When the activated asparagine attacks its main-chain carbonyl carbon, the resulting oxyanion is stabilized by a protonated glutamate. Upon cleavage, this proton could be transferred to the leaving amine group, helping overcome a significant energy barrier. Together, these findings provide insight into factors important for asparagine cyclization, a mechanism broadly used for protein cleavage.


Assuntos
Asparagina/química , Asparagina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Catálise , Domínio Catalítico , Ciclização , Escherichia coli/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Prótons , Eletricidade Estática , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA