Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Model Earth Syst ; 13(4): e2020MS002346, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34221239

RESUMO

An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5-chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7-mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode-resolved thermodynamics and heterogeneous chemical reactions. Applied in the free-running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement with observations and previous studies. Inclusion of nitrate resulted in ∼10% higher global average accumulation mode number concentrations, indicating enhanced growth of Aitken mode aerosols from nitrate formation. While the simulated accumulation mode nitrate burdens are high over the anthropogenic source regions, the sea-salt and dust modes respectively constitute about 74% and 17% of the annual global average nitrate burden. Regional clear-sky shortwave radiative cooling of up to -5 W m-2 due to nitrate is seen, with a much smaller global average cooling of -0.05 W m-2. Significant enhancements in regional cloud condensation nuclei (at 0.1% supersaturation) and cloud droplet number concentrations are also attributed to nitrate, causing an additional global average shortwave cooling of -0.8 W m-2. Taking into consideration of changes in both longwave and shortwave radiation under all-sky conditions, the net change in the top of the atmosphere radiative fluxes induced by including nitrate aerosol is -0.7 W m-2.

2.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

3.
Environ Sci Technol ; 52(3): 1191-1199, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29244949

RESUMO

Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.


Assuntos
Compostos Orgânicos , Aerossóis , Difusão , Cinética , Viscosidade
4.
J Adv Model Earth Syst ; 10(10): 2514-2526, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31031881

RESUMO

The direct radiative forcing of black carbon aerosol (BC) on the Earth system remains unsettled, largely due to the uncertainty with physical properties of BC throughout their lifecycle. Here we show that ambient chamber measurements of BC properties provide a novel constraint on the crude BC aging representation in climate models. Observational evidence for significant absorption enhancement of BC can be reproduced when the aging processes in the four-mode version of the Modal Aerosol Module (MAM4) aerosol scheme in the Community Atmosphere Model version 5 are calibrated by the recent in situ chamber measurements. An observation-based scaling method is developed in the aging timescale calculation to alleviate the influence of biases in the simulated model chemical composition. Model sensitivity simulations suggest that the different monolayer settings in the BC aging parameterization of MAM4 can cause as large as 26% and 24% differences in BC burden and radiative forcing, respectively. We also find that an increase in coating materials (e.g., sulfate and secondary organic aerosols) reduces BC lifetime by increasing the hygroscopicity of the mixture but enhances its absorption, resulting in a net increase in BC direct radiative forcing. Our results suggest that accurate simulations of BC aging processes as well as other aerosol species are equally important in reducing the uncertainty of BC forcing estimation.

5.
Proc Natl Acad Sci U S A ; 114(6): 1246-1251, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115713

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.


Assuntos
Atmosfera/química , Benzo(a)pireno/química , Carcinógenos/química , Neoplasias Pulmonares/induzido quimicamente , Modelos Químicos , Aerossóis , Benzo(a)pireno/efeitos adversos , Clima , Humanos , Oxirredução , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA