Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486097

RESUMO

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
2.
Plants (Basel) ; 11(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36235429

RESUMO

The grapevine is an economically important plant, with a historical connection to the development of human culture. Currently, over 6000 accessions are known as individual grapevine varieties, some of which are important to national heritage, valuable for current viticultural practices, and as genetic resources to maintain plasticity under changing climatic conditions, environmental sustainability, and market demands. Recently, the diversity of cultivated grapevines has declined significantly, due to the increased focus of global wine industries on a few major cultivars. Moreover, due to biotic and abiotic stresses, the wild V. vinifera germplasm's genetic diversity has declined, with some varieties on the verge of extinction. Vitis germplasm conservation can be achieved via either in situ (e.g., protected areas) or Ex situ (e.g., field collections, seed banks, and tissue culture collections) methods. This study aims to highlight the importance of Vitis field bank collections. We demonstrate the research done in the Israeli indigenous Vitis vinifera collection. The multi-layer analysis of the varieties enabled the identification of drought stress-resistant varieties, and suggested a mechanism for this resistance through noting the dramatic phenological differences in foliage development between resistant and sensitive varieties. In addition, we show a general characterization of the varieties via major grape characteristics, including bunch and berry shape, as well as their possible utilization based on their aromatic and phenolic profiles.

3.
Proc Biol Sci ; 289(1975): 20220567, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611538

RESUMO

Mate choice informed by the immune genes of the major histocompatibility complex (MHC) may provide fitness benefits including offspring with increased immunocompetence. Olfactory cues are considered the primary mechanism organisms use to evaluate the MHC of potential mates, yet this idea has received limited attention in birds. Motivated by a finding of MHC-dependent mate choice in the Leach's storm-petrel (Oceanodroma leucorhoa), we examined whether the chemical profiles of this highly scented seabird contain information about MHC genes. Whereas previous studies in birds examined non-volatile compounds, we used gas chromatography-mass spectrometry to measure the volatile compounds emitted from feathers that potentially serve as olfactory infochemicals about MHC and coupled this with locus-specific genotyping of MHC IIB genes. We found that feather chemicals reflected individual MHC diversity through interactions with sex and breeding status. Furthermore, similarity in MHC genotype was correlated with similarity in chemical profiles within female-female and male-female dyads. We provide the first evidence that volatile chemicals from bird feathers can encode information about the MHC. Our findings suggest that olfaction likely aids MHC-based mate choice in this species and highlight a role for chemicals in mediating genetic mate choice in birds where this mode of communication has been largely overlooked.


Assuntos
Aves , Plumas , Animais , Aves/genética , Plumas/química , Feminino , Genótipo , Complexo Principal de Histocompatibilidade/genética , Masculino , Feromônios/análise , Olfato
4.
Methods Mol Biol ; 2469: 1-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508825

RESUMO

Phenolics are ubiquitous compounds that represent the most abundant and diverse class of plant metabolites. From an analytical point of view, phenolics can be divided into soluble phenolics such as phenolic acids, phenylpropanoids, flavonoids and quinones, and nonsoluble compounds such as proanthocyanidins, lignins, and cell wall-bound hydroxycinnamic acids. Extraction of phenolics from the sample material is the first step toward their analysis. Biochemical methods for determination of total phenolics content were widely used in the past but modern chromatographic and mass spectrometric methods for identification and quantification of individual compounds are available in recent years. In this chapter, we describe methods for phenolic compounds extraction used in our laboratories from berries of Vitis vinifera and analytical methods including HPLC coupled to DAD detector and Q-TOF LC/MS for their analysis.


Assuntos
Vitis , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Flavonoides/análise , Frutas/química , Fenóis/química , Extratos Vegetais/química , Vitis/química
5.
J Chromatogr A ; 1674: 463130, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605468

RESUMO

Monoterpenes contribute to the characteristic aroma of several hop varieties and may occur as nonvolatile glycosides. Upon hydrolysis, the volatile terpenes are released from the glycoside precursors. Little is known, however, about the glycoside composition of hops. Seven pentose-hexose monoterpene alcohol glycosides from dried Humulus lupulus L. cv. Citra cones were isolated using high performance liquid chromatography separation and fractionation on a reverse phase phenyl-hexyl column. Further evaluation of each isolated fraction through HPLC qTOF MS with porous graphitic carbon (PGC) showed that the seven isolated monoterpenyl glycoside fractions could be further resolved into 20 isomers. Isolation on phenyl-hexyl followed by separation on PGC was needed to distinguish each isomer present. Additionally, the hop cones were screened for potential aroma glycosides. Using the PGC column combined with a database of over 900 potential glycosides, the identification of 21 additional monoterpene-polyol, norisoprenoid, volatile phenol, and aliphatic alcohol glycosides is reported.


Assuntos
Grafite , Humulus , Carbono , Cromatografia Líquida de Alta Pressão/métodos , Glicosídeos/análise , Humulus/química , Espectrometria de Massas , Monoterpenos/análise , Porosidade
6.
J Agric Food Chem ; 69(45): 13286-13298, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34213324

RESUMO

The isomeric nature of monoterpenyl glycosides makes unambiguous identification of intact glycosides difficult. As a result, it is challenging to relate the changes in free monoterpenol concentrations to the corresponding glycosides during wine fermentation and storage. In this study, we isolated and identified linalool, nerol, and geraniol monoterpenyl glycosides fromVitis viniferacv. Riesling grapes through fractionation followed by acid or enzyme hydrolysis. Changes in the composition of identified monoterpenyl glycosides and their respective free volatiles were then monitored during alcoholic fermentations of Riesling juice with four different yeast strains across two successive years. The relative concentrations of the volatiles were monitored by solid-phase microextraction gas chromatography mass spectrometry, while ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used for intact glycosides. Glycoside hydrolysis during fermentation could be related to relative concentrations of the corresponding free aglycones. However, other sources of free monoterpenols were also observed. Differences in glycoside hydrolysis among yeast strains and across years were observed and may be related to grape maturity and/or nutrient levels.


Assuntos
Vitis , Vinho , Álcoois , Fermentação , Glicosídeos/análise , Monoterpenos/análise , Vinho/análise
7.
Mol Plant Pathol ; 22(8): 984-1005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075700

RESUMO

Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.


Assuntos
Ácido Abscísico , Vitis , Frutas , Doenças das Plantas/genética , Vírus Satélites , Vitis/genética
8.
J Infect Dis ; 224(10): 1742-1750, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33858010

RESUMO

BACKGROUND: Respiratory viral infections are common and potentially devastating to patients with underlying lung disease. Diagnosing viral infections often requires invasive sampling, and interpretation often requires specialized laboratory equipment. Here, we test the hypothesis that a breath test could diagnose influenza and rhinovirus infections using an in vitro model of the human airway. METHODS: Cultured primary human tracheobronchial epithelial cells were infected with either influenza A H1N1 or rhinovirus 1B and compared with healthy control cells. Headspace volatile metabolite measurements of cell cultures were made at 12-hour time points postinfection using a thermal desorption-gas chromatography-mass spectrometry method. RESULTS: Based on 54 compounds, statistical models distinguished volatile organic compound profiles of influenza- and rhinovirus-infected cells from healthy counterparts. Area under the curve values were 0.94 for influenza, 0.90 for rhinovirus, and 0.75 for controls. Regression analysis predicted how many hours prior cells became infected with a root mean square error of 6.35 hours for influenza- and 3.32 hours for rhinovirus-infected cells. CONCLUSIONS: Volatile biomarkers released by bronchial epithelial cells could not only be used to diagnose whether cells were infected, but also the timing of infection. Our model supports the hypothesis that a breath test could serve to diagnose viral infections.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Compostos Orgânicos Voláteis , Biomarcadores , Humanos , Influenza Humana/diagnóstico , Influenza Humana/metabolismo , Rhinovirus , Compostos Orgânicos Voláteis/análise
9.
Foods ; 10(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923228

RESUMO

Volatile aroma compounds found in grapes and hops may be present as both free volatiles and bound glycosides. Glycosides found in the raw materials are transferred to their respective fermented beverages during production where the odorless compounds may act as a reservoir of free volatiles that may be perceived by the consumer if hydrolyzed. A review of the literature on grape and wine glycosides and the emerging literature for glycosides in hops is presented in order to demonstrate the depth of history in grape glycoside research and may help direct new research on hop glycosides. Focus is brought to the presence of glycosides in the raw materials, the effect that winemaking and brewing have on glycoside levels, and current methods for the analysis of glycosidically linked aroma compounds.

10.
Hortic Res ; 8(1): 51, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642590

RESUMO

Cytokinin and gibberellic acid (GA) are growth regulators used to increase berry size in seedless grapes and it is of interest to understand their effects on the phenylpropanoid pathway and on ripening processes. GA3 and synthetic cytokinin forchlorfenuron (N-(2-chloro-4-pyridyl)-N'-phenylurea, CPPU) and their combination were applied to 6 mm diameter fruitlets of 'Sable Seedless', and berries were sampled 51 and 70 days (d) following application. All treatments increased berry size and delayed sugar accumulation and acid degradation with a stronger effect of CPPU. CPPU, but not GA, reduced berry color and the levels of anthocyanins. While CPPU reduced the levels of anthocyanins by more than 50%, the combined treatment of GA+CPPU reduced the levels by about 25% at 51 d. CPPU treatment had minor effects on flavonols content but increased the levels of monomeric flavan-3-ols by more than two-fold. Phloroglucinol analysis using HPLC showed that proanthocyanidin content was significantly increased by CPPU, whereas mean degree of polymerization was reduced from 26 to 19. Volatile analysis by GC-MS showed changes in composition with CPPU or GA treatment with potential impact on flavor. RNA-seq analysis showed that GA had a minor overall effect on the transcriptome whereas CPPU had pronounced effects on gene expression at both 51 and 70 d. Comparing the control and CPPU at similar Brix of ca. 19.7°, a reduced expression of stilbene synthases (STSs) including their regulators MYB14 and MYB15, and other phenylpropanoid-related genes was observed in CPPU-treated grapes. Overall, our study shows that CPPU had a major influence on the phenylpropanoid pathway and affected multiple ripening-related processes.

11.
J Agric Food Chem ; 69(15): 4356-4370, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33750127

RESUMO

Pentose-hexose monoterpene alcohol glycosides were isolated and semiquantitatively measured in dried Humulus lupulus cones using UHPLC-qTOF-MS/MS and HPLC fractionation followed by GC-MS. The samples evaluated included hop cones from five important dual-purpose cultivars (varieties) in the United States, from two locations (farms) per variety and from three distinct harvest time points (maturities) per location, as dictated by dry-matter (% w/w) at the time of harvest. Hop variety accounted for the biggest variation among the concentrations of pentose-hexose monoterpene alcohol glycosides as well as other volatile and nonvolatile chemical factors measured in the samples. This indicates that genetics plays a major role in hop flavor production. Interestingly, "maturity", or ripeness at the time of harvest, was the next most significant factor impacting the concentrations of pentose-hexose monoterpene alcohol glycosides along with most of the other volatile and nonvolatile factors (such as total oil concentration and composition). However, maturity notably had a bigger impact on some cultivars such as Sabro, Mosaic, Simcoe, and Citra. Surprisingly, farm (i.e., location, farming practices, etc.) accounted for the least amount of variation among the concentrations of the different analytical factors. These results highlight the importance of breeding/genetics as well as considering hop maturity/ripeness at the time of harvest on the production and subsequent development of analytical chemical factors associated with driving hoppy beer flavor. It is essential for future studies assessing the impact of different farming practices and locations (i.e., regionality, terroir, etc.) on the constituents in hops important for hoppy beer flavor to consider and account for the impact of hop maturity as well as genetics.


Assuntos
Humulus , Fazendas , Monoterpenos , Melhoramento Vegetal , Espectrometria de Massas em Tandem
12.
Phytopathology ; 111(10): 1818-1827, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33616417

RESUMO

Phytophthora ramorum is an invasive, broad host range pathogen that causes ramorum blight and sudden oak death in forest landscapes of western North America. In commercial nurseries, asymptomatic infections of nursery stock by P. ramorum and other Phytophthora species create unacceptable risk and complicate inspection and certification programs designed to prevent introduction and spread of these pathogens. In this study, we continue development of a volatile organic compound (VOC)-based test for detecting asymptomatic infections of P. ramorum in Rhododendron sp. We confirmed detection of P. ramorum from volatiles collected from asymptomatic root-inoculated Rhododendron plants in a nursery setting, finding that the VOC profile of infected plants is detectably different from that of healthy plants, when measured from both ambient VOC emissions and VOCs extracted from leaf material. Predicting infection status was successful from ambient volatiles, which had a mean area under the curve (AUC) value of 0.71 ± 0.17, derived from corresponding receiver operating characteristic curves from an extreme gradient boosting discriminant analysis. This finding compares with that of extracted leaf volatiles, which resulted in a lower AUC value of 0.51 ± 0.21. In a growth chamber, we contrasted volatile profiles of asymptomatic Rhododendron plants having roots infected with one of three pathogens: P. ramorum, P. cactorum, and Rhizoctonia solani. Each pathogen induced unique and measurable changes, but generally the infections reduced volatile emissions until 17 weeks after inoculation, when emissions trended upward relative to those of mock-inoculated controls. Forty-five compounds had significant differences compared with mock-inoculated controls in at least one host-pathogen combination.


Assuntos
Phytophthora , Rhododendron , Infecções Assintomáticas , América do Norte , Doenças das Plantas
13.
J Chem Ecol ; 46(9): 845-864, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32856136

RESUMO

Avian chemical communication, once largely overlooked, is a growing field that has revealed the important role that olfaction plays in the social lives of some birds. Leach's storm-petrels (Oceanodroma leucorhoa) have a remarkable sense of smell and a strong, musky scent. This long-lived, monogamous seabird relies on olfaction for nest relocation and foraging, but whether they use scent for communication is less well studied. They are nocturnally active at the breeding colony and yet successfully reunite with their mate despite poor night-vision, indicating an important role for non-visual communication. We investigated the chemical profiles of Leach's storm-petrels to determine whether there is socially relevant information encoded in their plumage odor. To capture the compounds comprising their strong scent, we developed a method to study the compounds present in the air surrounding their feathers using headspace stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. We collected feathers from Leach's storm-petrels breeding on Bon Portage Island in Nova Scotia, Canada in both 2015 and 2016. Our method detected 142 commonly occurring compounds. We found interannual differences in chemical profiles between the two sampling years. Males and females had similar chemical profiles, while individuals had distinct chemical signatures across the two years. These findings suggest that the scent of the Leach's storm-petrel provides sociochemical information that could facilitate olfactory recognition of individuals and may inform mate choice decisions.


Assuntos
Comunicação Animal , Comportamento Animal/fisiologia , Aves/fisiologia , Plumas/química , Odorantes/análise , Olfato/fisiologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino
14.
Foods ; 9(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784991

RESUMO

Sangiovese is the most cultivated red grape variety in Italy where it is certified for the production of several Protected Designation of Origin (PDO) wines, and it is one of the most cultivated Italian red grape varieties in California. Despite the global distribution of this variety, there is a lack of international studies on Sangiovese grapes and wines. For this reason, the present study aimed to compare 20 commercial Sangiovese wines from 2017 harvest, 9 produced in Italy (Tuscany) and 11 in California, in order to evaluate the intrinsic and perceived quality. The eligibility, identity, and style properties (the intrinsic quality) of the wines were evaluated. A group of 11 Italian experts evaluated the perceived quality by rating the typicality of the wines. The experimental data showed that the intrinsic quality of Sangiovese wine samples was affected by the growing area; in particular, the wine resulted very different for the color indices and polyphenol composition. The above differences in intrinsic quality levels did not lead to a different evaluation of the perceived quality (typicality) by the wine experts. The results evidenced that Sangiovese variety is recognizable also if grown outside its original terroir, and fresh and fruity wines were considered more typical. This study expands our current knowledge of Sangiovese wines and the contribution of regional characteristics to the composition of wine.

15.
Plant Sci ; 296: 110495, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32540014

RESUMO

Girdling is an important horticultural practice that allows increased yields or modulated ripening but not much is known how it affects metabolic processes. Trunk girdling was performed at fruit set using a single-blade knife on two table grape cultivar SUPERIOR SEEDLESS® and SABLE SEEDLESS®. Sampling of berries was carried out 1 or 9 weeks after girdling in 2017 from both cultivars and 7 and 9 weeks after girdling of 'Sable' in 2018. As expected, girdling resulted in consistent increase in berry size but total soluble content of mature 'Superior' berries was not affected and in 'Sable' it was slightly reduced in one of the two seasons examined. One week after girdling, abscisic acid and gibberellin content was higher in fruitlets from girdled vines and genes of the phenylpropanoid pathway were induced in both cultivars. Berry color development of 'Sable' measured both by auto-fluorescence and concentration of anthocyanins was reduced upon girdling. In contrast, flavan-3-ol and flavonol content, and total proanthcyanidins (PA) content increased 1.8-fold while the mean degree polymerization of the PA decreased from 26 to 21 upon girdling. Girdling reduced the levels of fatty acid derived volatiles in berries of 'Superior' and 'Sable'. In 'Sable', the total terpene level and the level of volatiles released after acid hydrolysis, decreased upon girdling. Overall, our study indicates that girdling can divert metabolic pathways in a manner that may have significant effect on the taste and flavor of grapes.


Assuntos
Frutas/metabolismo , Proantocianidinas/biossíntese , Vitis/metabolismo , Ácido Abscísico/metabolismo , Produção Agrícola/métodos , Flavonoides/metabolismo , Flavonóis/metabolismo , Giberelinas/metabolismo , Redes e Vias Metabólicas , Reguladores de Crescimento de Plantas/metabolismo , Proantocianidinas/metabolismo , Vitis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo
16.
Molecules ; 25(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486273

RESUMO

The compositional authentication of wine is of great interest, as the geographic origin of the grapes is often associated with quality, uniqueness, and authenticity. Previous elemental fingerprinting studies mainly discriminated wines from different countries or regions within a country. Here, we report the use of element profiles to distinguish commercial Pinot noir wines from five sub-regional appellations or neighborhoods within one American viticultural area (AVA). Fifty-three single cultivar wines were collected over two harvests and analyzed using microwave plasma-atomic emission spectroscopy (MP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS). Of 62 monitored elements that were quantified with fully validated methods, 24 and 32 elements differed significantly across the neighborhoods and vintages, respectively (p < 0.05). Targeted canonical variate analysis (CVA) explained 85%-90% of the variance ratio across the two vintages, indicating persistent and stable elemental fingerprints of wines at a sub-regional level. A sixth, newly founded neighborhood was correctly grouped separately from the others using a Soft Independent Modeling of Class Analogy (SIMCA), indicating the potential of elemental fingerprints for wine authenticity.


Assuntos
Oligoelementos/química , Vitis/química , Vinho , Inocuidade dos Alimentos , Espectrofotometria Atômica
17.
J Agric Food Chem ; 68(12): 3817-3833, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129620

RESUMO

Ultra-high-performance liquid chromatography (UHPLC) accurate mass tandem mass spectrometry is a powerful tool for identifying and profiling plant metabolites. Here, we describe an approach to characterize glycosidically bound precursors of monoterpenoids, norisoprenoids, volatile phenols, aliphatic alcohols, and sesquiterpenoids in grapes. Chromatographic separation of glycosylated compounds was evaluated using phenyl-hexyl (reverse phase), glycan/hydrophilic interaction, and porous graphitic carbon (PGC) stationary phases. PGC provided the best UHPLC separation for 102 tentatively identified aroma precursors in Vitis vinifera L. cv. Riesling and Muscat of Alexandria berries. Monoterpene-triol, monoterpene-tetraol, and sesquiterpenol glycosides were tentatively identified for the first time in grapes, and a C6-alcohol trisaccharide was tentatively identified for the first time in any plant. Comparison of glycosylated aroma molecules in Riesling and Muscat of Alexandria grapes showed that the two varieties were distinguishable based on relative abundances of shared glycosides and the presence of glycosides unique to a single variety.


Assuntos
Frutas/química , Glicosídeos/análise , Vitis/química , Vinho/análise , Cromatografia Líquida de Alta Pressão , Monoterpenos/análise , Norisoprenoides/análise , Odorantes/análise , Sesquiterpenos/análise , Espectrometria de Massas em Tandem
18.
J Econ Entomol ; 113(2): 752-759, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31879768

RESUMO

The olive fruit fly, Bactrocera oleae (Rossi), is one of the most damaging insect pests of olives worldwide, requiring the use of insecticides for fruit protection in many orchards. Olive fruit flies are attracted to volatile composunds, including a female-produced pheromone, and host-plant and bacterial volatiles. Preliminary laboratory bioassays were conducted for olive fruit fly attraction to over 130 yeast strains from among 400 that were isolated from B. oleae adults and larvae or other insects, infested olives, and potential feeding sites. Kuraishia capsulata, Scheffersomyces ergatensis, Peterozyma xylosa, Wickerhamomyces subpelliculosus, and Lachancea thermotolerans appeared to attract B. oleae as well or better than did torula yeast pellets (Cyberlindnera jadinii; syn. Candida utilis). Volatile compounds emitted by these yeast strains were chemically identified, and included isobutanol, isoamyl alcohol, 2-phenethyl alcohol, isobutyl acetate, and 2-phenethyl acetate. The behavioral response of B. oleae adults to these volatile compounds at three concentrations was tested in a laboratory Y-tube olfactometer. The same volatile compounds were also tested in the field. Isoamyl alcohol was more attractive than the other compounds tested in both laboratory and field bioassays. Isobutanol was not attractive to B. oleae in either laboratory bioassay or field bioassay. Identifying yeast volatiles attractive to the olive fruit fly may lead to development of a more effective lure for detection, monitoring, and possibly control of B. oleae.


Assuntos
Olea , Tephritidae , Animais , Drosophila , Feminino , Frutas , Larva
19.
J Breath Res ; 14(1): 016002, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31430743

RESUMO

Volatile organic compound (VOC) emissions were measured from Chinese Hamster Ovary (CHO) cell and T cell bioreactor gas exhaust lines with the goal of non-invasively metabolically profiling the expansion process. Measurements of cellular 'breath' were made directly from the gas exhaust lines using polydimethylsiloxane (PDMS)-coated magnetic stir bars, which underwent subsequent thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Baseline VOC profiles were observed from bioreactors filled with only liquid media. After inoculation, unique VOC profiles correlated to cell expansion over the course of 8 d. Partial least squares (PLS) regression models were built to predict cell culture density based on VOC profiles of CHO and T cells (R 2 = 0.671 and R 2 = 0.769, respectively, based on a validation data set). T cell runs resulted in 47 compounds relevant to expansion while CHO cell runs resulted in 45 compounds; the 20 most relevant compounds of each cell type were putatively identified. On the final experimental days, sorbent-covered stir bars were placed directly into cell-inoculated media and into media controls. Liquid-based measurements from spent media containing cells could be distinguished from media-only controls, indicating soluble VOCs excreted by the cells during expansion. A PLS-discriminate analysis (PLS-DA) was performed, and 96 compounds differed between T cell-inoculated media and media controls with 72 compounds for CHO cells; the 20 most relevant compounds of each cell line were putatively identified. This work demonstrates that the volatilome of cell cultures can be exploited by chemical detectors in bioreactor gas and liquid waste lines to non-invasively monitor cellular health and could possibly be used to optimize cell expansion conditions 'on-the-fly' with appropriate control loop systems. Although the basis for statistical models included compounds without certain identification, this work provides a foundation for future research of bioreactor emissions. Future studies must move towards identifying relevant compounds for understanding of underlying biochemistry.


Assuntos
Reatores Biológicos , Linfócitos T/metabolismo , Compostos Orgânicos Voláteis/análise , Animais , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Análise dos Mínimos Quadrados , Análise de Componente Principal
20.
Food Chem ; 297: 124921, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253264

RESUMO

Plants conjugate monoterpenoids to sugars, rendering them non-volatile. Hydrolysis of these glycosidic precursors frees the volatile aroma compounds. Here, we profile intact monoterpenyl glycosides in six Vitis vinifera grape berry cultivars. Relative concentrations of twenty-six monoterpenyl glycosides, including nine new putatively identified compounds, were analyzed by UHPLC-QTOF MS/MS at three times during grape maturation (pre-véraison, véraison, and post-véraison). Total glycoside content reached a maximum in Muscat cultivars post-véraison but remained relatively constant in all other cultivars. Three types of monoterpenyl glycosides predominated in all samples: malonylated monoterpenol glucosides, monoterpenol hexose-pentoses, and monoterpendiol hexose-pentoses. The two Muscat cultivars were not differentiated at the earlier developmental stages but could be differentiated post-véraison. In contrast, similarities between Chardonnay and Pinot noir glycoside profiles developed post-véraison. Overall monoterpene glycoconjugation patterns may align with underlying genetic relationships among cultivars. By understanding monoterpene glycoconjugation in wine grapes, scientists and winemakers can better understand grape and wine aromas.


Assuntos
Monoterpenos/química , Vitis/química , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Frutas/química , Frutas/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Glicosilação , Monoterpenos/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA