Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(12): 6493-6509, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156347

RESUMO

N2 -fixing heterocytous cyanobacteria are considered to play a minor role in sustaining coastal microbial mat communities developing under normal marine to hypersaline conditions. Here, we investigated microbial mats growing under different salinities from freshwater mats of Giblin River (Tasmania) to metahaline and hypersaline mats of Shark Bay (Western Australia). Analyses of genetic (rRNA and mRNA) and biological markers (heterocyte glycolipids) revealed an unexpectedly large diversity of heterocytous cyanobacteria in all the studied microbial mat communities. It was observed that the taxonomic distribution as well as abundance of cyanobacteria is strongly affected by salinity. Low salinity favoured the presence of heterocytous cyanobacteria in freshwater mats, while mats thriving in higher salinities mainly supported the growth unicellular and filamentous non-heterocytous genera. However, even though mRNA transcripts derived from heterocytous cyanobacteria were lower in Shark Bay (<6%) microbial mats, functional analyses revealed that these diazotrophs were transcribing a substantial proportion of the genes involved in biofilm formation and nitrogen fixation. Overall, our data reveal an unexpectedly high diversity of heterocytous cyanobacteria (e.g. Calothrix, Scytonema, Nodularia, Gloeotrichia, Stigonema, Fischerella and Chlorogloeopsis) that had yet to be described in metahaline and hypersaline microbial mats from Shark Bay and that they play a vital role in sustaining the ecosystem functioning of coastal-marine microbial mat systems.


Assuntos
Cianobactérias , Microbiota , Salinidade , Austrália , Cianobactérias/genética , Água Doce , RNA Mensageiro
2.
Sci Rep ; 7(1): 15384, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133809

RESUMO

Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.


Assuntos
Alphaproteobacteria , Cianobactérias , Sedimentos Geológicos/microbiologia , Modelos Biológicos , Filogenia , Áreas Alagadas , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA