Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 60, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413961

RESUMO

BACKGROUND: When integrated with insecticide-treated bed nets, larval control of Anopheles mosquitoes could fast-track reductions in the incidence of human malaria. However, larval control interventions may deliver suboptimal outcomes where the preferred breeding places of mosquito vectors are not well known. This study investigated the breeding habitat choices of Anopheles mosquitoes in southern Nigeria. The objective was to identify priority sites for mosquito larval management in selected urban and periurban locations where malaria remains a public health burden.  METHODS: Mosquito larvae were collected in urban and periurban water bodies during the wet-dry season interface in Edo, Delta, and Anambra States. Field-collected larvae were identified based on PCR gel-electrophoresis and amplicon sequencing, while the associations between Anopheles larvae and the properties and locations of water bodies were assessed using a range of statistical methods. RESULTS: Mosquito breeding sites were either man-made (72.09%) or natural (27.91%) and mostly drainages (48.84%) and puddles (25.58%). Anopheles larvae occurred in drainages, puddles, stream margins, and a concrete well, and were absent in drums, buckets, car tires, and a water-holding iron pan, all of which contained culicine larvae. Wild-caught Anopheles larvae comprised Anopheles coluzzii (80.51%), Anopheles gambiae sensu stricto (s.s.) (11.54%), and Anopheles arabiensis (7.95%); a species-specific PCR confirmed the absence of the invasive urban malaria vector Anopheles stephensi among field-collected larvae. Anopheles arabiensis, An. coluzzii, and An. gambiae s.s. displayed preferences for turbid, lowland, and partially sunlit water bodies, respectively. Furthermore, An. arabiensis preferred breeding sites located outside 500 m of households, whereas An. gambiae s.s. and An. coluzzii had increased detection odds in sites within 500 m of households. Anopheles gambiae s.s. and An. coluzzii were also more likely to be present in natural water bodies; meanwhile, 96.77% of An. arabiensis were in man-made water bodies. Intraspecific genetic variations were little in the dominant vector An. coluzzii, while breeding habitat choices of populations made no statistically significant contributions to these variations. CONCLUSION: Sibling malaria vectors in the An. gambiae complex display divergent preferences for aquatic breeding habitats in southern Nigeria. The findings are relevant for planning targeted larval control of An. coluzzii whose increasing evolutionary adaptations to urban ecologies are driving the proliferation of the mosquito, and An. arabiensis whose adults typically evade the effects of treated bed nets due to exophilic tendencies.


Assuntos
Anopheles , Malária , Animais , Adulto , Humanos , Anopheles/genética , Mosquitos Vetores , Nigéria , Malária/epidemiologia , Água , Larva , Cruzamento
2.
Front Vet Sci ; 9: 931078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051538

RESUMO

Shimba Hills is a wildlife area in Kenya and a major focus of tsetse-borne trypanosomes in East Africa. In Shimba Hills, tsetse-borne trypanosomes constrain animal health and smallholder livelihoods. However, epidemiological data to guide hotspot-targeted control of infections are limited. This study assessed the dynamics of tsetse-borne trypanosome risk in Shimba Hills with the objective to describe infection hotspots for targeted control. Tsetse flies (n = 696) collected in field surveys between November 2018 and September 2019 in Shimba Hills were characterized for chronological age and phenotypic sizes and screened for trypanosome and cattle DNA. Entomological inoculation rates for trypanosome risk assessment were derived from the product of fly abundance and molecular rates of vector infection and confirmed cattle bloodmeals in tsetse flies. In addition, cattle health indicators including anemia scores were assessed in contemporaneous parasitological surveys that screened livestock blood samples (n = 1,417) for trypanosome using the buffy-coat technique. Compared with Glossina brevipalpis and G. austeni, G. pallidipes was the most abundant tsetse fly species in Shimba Hills and had a wider spatial distribution and greater likelihood for infectious bites on cattle. The risk of cattle infection was similar along the Shimba Hills human-wildlife-livestock interface and high within one thousand meters of the wildlife reserve boundary. Trypanosomes in tsetse flies were highly diverse and included parasites of wild-suids probably acquired from warthogs in Shimba Hills. Age and phenotypic sizes were similar between tsetse fly populations and did not affect the probability of infection or cattle bloodmeals in the vectors. Anemia was more likely in trypanosome-positive cattle whilst parasitological infection rates in cattle samples maintained a weak relationship with entomological inoculation rates probably because of the limited time scale of sample collection. Trypanosome risk in Shimba Hills is high in locations close to the wildlife reserve and driven by G. pallidipes infectious bites on cattle. Therefore, trypanosome vector control programmes in the area should be designed to reduce G. pallidipes abundance and tailored to target sites close to the wildlife reserve.

3.
Pathogens ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832656

RESUMO

Trypanosomes are endemic and retard cattle health in Shimba Hills, Kenya. Wildlife in the area act as reservoirs of the parasites. However, wild animal species that harbor and expose cattle to tsetse-borne trypanosomes are not well known in Shimba Hills. Using xeno-monitoring surveillance to investigate wild animal reservoirs and sources of trypanosomes in Shimba Hills, we screened 696 trypanosome-infected and uninfected tsetse flies for vertebrate DNA using multiple-gene PCR-High Resolution Melting analysis and amplicon sequencing. Results revealed that tsetse flies fed on 13 mammalian species, preferentially Phacochoerus africanus (warthogs) (17.39%, 95% CI: 14.56-20.21) and Bos taurus (cattle) (11.35%, 95% CI: 8.99-13.71). Some tsetse flies showed positive cases of bloodmeals from multiple hosts (3.45%, 95% CI: 2.09-4.81), including warthog and cattle (0.57%, 95% CI: 0.01-1.14). Importantly, tsetse flies that took bloodmeals from warthog had significant risk of infections with Trypanosoma vivax (5.79%, 95% CI: 1.57-10.00), T. congolense (7.44%, 95% CI: 2.70-12.18), and T. brucei sl (2.48%, 95% CI: -0.33-5.29). These findings implicate warthogs as important reservoirs of tsetse-borne trypanosomes affecting cattle in Shimba Hills and provide valuable epidemiological insights to underpin the parasites targeted management in Nagana vector control programs in the area.

4.
Infect Genet Evol ; 93: 104953, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091066

RESUMO

Trypanosoma vivax is a vector-borne protozoan parasite of livestock endemic to Africa and South America. To date, fifteen genotypes of the parasite have been described in vertebrate and insect hosts in East Africa. However, information regarding T. vivax diversity remains limited in many endemic countries in the sub-region, including Kenya. Such information could deepen insight into the local epidemiology of animal trypanosomiasis in Shimba Hills, a wildlife area in southeast Kenya where T. vivax is endemic and infects livestock. We employed two-gene conventional-PCR-sequencing and phylogenetic analysis to characterize T. vivax genotypes in tsetse flies collected between November 2018 and September 2019 in the wildlife-livestock interface of the Shimba Hills National Reserve. Phylogenetic analysis of Internal Transcribed Spacer-1 (ITS-1) sequences of T. vivax isolates confirmed the presence of two T. vivax genotypes in Shimba Hills of which >80% of T. vivax isolates from tsetse flies clustered within the virulent Tvv4-genotype clade. Tsetse infections with the Tvv4 genotype were also confirmed based on 18S rRNA gene sequencing. Expanded gene characterization identified three closely related haplotypes within the Tvv4-clade. The Tvv4-isolates were detected in male and female Glossina pallidipes tsetse flies, most of which were collected from grasslands and within two kilometres of the Shimba Hills National Reserve boundary. Considering that T. vivax is the most common trypanosome in the Shimba Hills area and causes severe clinical conditions in livestock, the Tvv4 genotype reported here for the first time in Kenya contributes to our understanding of these pathologies. The effectiveness of trypanocidal drugs in the management of Tvv4 is presently not clearly understood. Therefore, the parasite management in Shimba Hills should focus on vector control to reduce the density of G. pallidipes, especially in grasslands near the wildlife protectorate.


Assuntos
Controle de Doenças Transmissíveis , Genótipo , Trypanosoma vivax/genética , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Quênia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA