RESUMO
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. Microglial TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about how TREM2 affects microglial function within epileptogenesis. To investigate this, we utilized male TREM2 knockout (KO) mice within the intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both the severity of acute status epilepticus and the number of spontaneous recurrent seizures characteristic of chronic focal epilepsy. Phagocytic clearance of damaged neurons by microglia was also impaired by TREM2 KO and reduced phagocytic activity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between expression of the microglial phagocytic marker CD68 and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity are important to epileptogenic pathology.
RESUMO
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.
RESUMO
Evaluation of rapidly progressive dementia (RPD) is usually challenging. In most cases, patients progress to dementia in weeks to months, and the differential diagnosis is broad. In this case, a woman in her 60s presented with a 1-month history of episodic vertigo, cognitive decline, ataxia and myoclonus. Cerebrospinal fluid total tau was markedly elevated, which was helpful in establishing the diagnosis and discussing prognosis/end-of-life measures with the patient's family. This case summarises a stepwise diagnostic approach for patients with RPD and highlights recent literature on biomarkers of Creutzfeldt-Jakob disease and autoimmune encephalitis.
Assuntos
Disfunção Cognitiva , Síndrome de Creutzfeldt-Jakob , Encefalite , Mioclonia , Feminino , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Encefalite/diagnóstico , Mioclonia/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Diagnóstico DiferencialRESUMO
Previous studies indicate that while transgenic mice with ATXN1[30Q]-D776-induced disease share pathological features caused by ATXN1[82Q] having an expanded polyglutamine tract, they fail to manifest the age-related progressive neurodegeneration seen in spinocerebellar ataxia type 1. The shared features include morphological alterations in climbing fiber (CF) innervation of Purkinje cells (PCs). To further investigate the ability of ataxin-1 (ATXN1) to impact CF/PC innervation, this study used morphological and functional approaches to examine CF/PC innervation during postnatal development in ATXN1[30Q]-D776 and ATXN1[82Q] cerebella. Notably, ATXN1[30Q]-D776 induced morphological alterations consistent with the development of the innervation of PCs by CFs being compromised, including a reduction of CF translocation along the PC dendritic tree, and decreased pruning of CF terminals from the PC soma. As previously shown for ATXN1[82Q], ATXN1[30Q]-D776 must enter the nucleus of PCs to induce these alterations. Experiments using conditional ATXN1[30Q]-D776 mice demonstrate that both the levels and specific timing of mutant ATXN1 expression are critical for alteration of the CF-PC synapse. Together these observations suggest that ATXN1, expressed exclusively in PCs, alters expression of a gene(s) in the postsynaptic PC that are critical for its innervation by CFs. To investigate whether ATXN1[30Q]-D776 curbs the progressive disease in ATXN1[82Q]-S776 mice, we crossed ATXN1[30Q]-D776 and ATXN1[82Q]-S776 mice and found that double transgenic mice developed progressive PC atrophy. Thus, the results also show that to develop progressive cerebellar degeneration requires expressing ATXN1 with an expanded polyglutamine tract.
Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fibras Nervosas/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/patologia , Sinapses/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Ataxina-1 , Ataxinas , Calbindinas , Avaliação da Deficiência , Modelos Animais de Doenças , Estimulação Elétrica , Corantes Fluorescentes , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação/genética , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , Imagem Óptica , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Ataxias Espinocerebelares/genética , Sinapses/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismoRESUMO
One fundamental unanswered question in the field of polyglutamine diseases concerns the pathophysiology of neuronal dysfunction. Is there dysfunction in a specific neuronal population or circuit initially that contributes the onset of behavioral abnormalities? This study used a systems-level approach to investigate the functional integrity of the excitatory cerebellar cortical circuitry in vivo from several transgenic ATXN1 mouse lines. We tested the hypotheses that there are functional climbing fiber (CF)-Purkinje cell (PC) and parallel fiber (PF)-PC circuit abnormalities using flavoprotein autofluorescence optical imaging and extracellular field potential recordings. In early-symptomatic and symptomatic animals expressing ATXN1[82Q], there is a marked reduction in PC responsiveness to CF activation. Immunostaining of vesicular glutamate transporter type 2 demonstrated a decrement in CF extension on PC dendrites in symptomatic ATXN1[82Q] mice. In contrast, responses to PF stimulation were relatively normal. Importantly, the deficits in CF-PC synaptic transmission required expression of pathogenic ataxin-1 (ATXN1[82Q]) and for its entrance into the nucleus of PCs. Loss of endogenous mouse Atxn1 had no discernible effects. Furthermore, the abnormalities in CF-PC synaptic transmission were ameliorated when mutant transgene expression was prevented during postnatal cerebellar development. The results demonstrate the preferential susceptibility of the CF-PC circuit to the effects of ATXN1[82Q]. Further, this deficit likely contributes to the abnormal motor phenotype of ATXN1[82Q] mice. For polyglutamine diseases generally, the findings support a model whereby specific neuronal circuits suffer insults that alter function before cell death.
Assuntos
Fibras Nervosas/patologia , Proteínas do Tecido Nervoso/genética , Vias Neurais/patologia , Neurônios/patologia , Proteínas Nucleares/genética , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Animais , Ataxina-1 , Ataxinas , Western Blotting , Morte Celular/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Técnicas de Patch-Clamp , Ataxias Espinocerebelares/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologiaRESUMO
Glutamine tract expansion triggers nine neurodegenerative diseases by conferring toxic properties to the mutant protein. In SCA1, phosphorylation of ATXN1 at Ser776 is thought to be key for pathogenesis. Here, we show that replacing Ser776 with a phosphomimicking Asp converted ATXN1 with a wild-type glutamine tract into a pathogenic protein. ATXN1[30Q]-D776-induced disease in Purkinje cells shared most features with disease caused by ATXN1[82Q] having an expanded polyglutamine tract. However, in contrast to disease induced by ATXN1[82Q] that progresses to cell death, ATXN1[30Q]-D776 failed to induce cell death. These results support a model where pathogenesis involves changes in regions of the protein in addition to the polyglutamine tract. Moreover, disease initiation and progression to neuronal dysfunction are distinct from induction of cell death. Ser776 is critical for the pathway to neuronal dysfunction, while an expanded polyglutamine tract is essential for neuronal death.