Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 155, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599877

RESUMO

A key step in understanding animal behaviour relies in the ability to quantify poses and movements. Methods to track body landmarks in 2D have made great progress over the last few years but accurate 3D reconstruction of freely moving animals still represents a challenge. To address this challenge here we develop the 3D-UPPER algorithm, which is fully automated, requires no a priori knowledge of the properties of the body and can also be applied to 2D data. We find that 3D-UPPER reduces by [Formula: see text] fold the error in 3D reconstruction of mouse body during freely moving behaviour compared with the traditional triangulation of 2D data. To achieve that, 3D-UPPER performs an unsupervised estimation of a Statistical Shape Model (SSM) and uses this model to constrain the viable 3D coordinates. We show, by using simulated data, that our SSM estimator is robust even in datasets containing up to 50% of poses with outliers and/or missing data. In simulated and real data SSM estimation converges rapidly, capturing behaviourally relevant changes in body shape associated with exploratory behaviours (e.g. with rearing and changes in body orientation). Altogether 3D-UPPER represents a simple tool to minimise errors in 3D reconstruction while capturing meaningful behavioural parameters.


Assuntos
Algoritmos , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Movimento , Comportamento Animal
3.
Curr Biol ; 33(3): 474-486.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36630957

RESUMO

Photoreceptor degeneration sufficient to produce severe visual loss often spares the inner retina. This raises hope for vision restoration treatments using optogenetics or electrical stimulation, which generate a replacement light input signal in surviving neurons. The success of these approaches is dependent on the capacity of surviving circuits of the visual system to generate and propagate an appropriate visual code in the face of neuroanatomical remodeling. To determine whether retinally degenerate animals possess this capacity, we generated a transgenic mouse model expressing the optogenetic actuator ReaChR in ON bipolar cells (second-order neurons in the visual projection). After crossing this with the rd1 model of photoreceptor degeneration, we compared ReaChR-derived responses with photoreceptor-driven responses in wild-type (WT) mice at the level of retinal ganglion cells and the visual thalamus. The ReaChR-driven responses in rd1 animals showed low photosensitivity, but in other respects generated a visual code that was very similar to the WT. ReaChR rd1 responses had high trial-to-trial reproducibility and showed sensitivity normalization to code contrast across background intensities. At the single unit level, ReaChR-derived responses exhibited broadly similar variations in response polarity, contrast sensitivity, and temporal frequency tuning as the WT. Units from the WT and ReaChR rd1 mice clustered together when subjected to unsupervised community detection based on stimulus-response properties. Our data reveal an impressive ability for surviving circuitry to recreate a rich visual code following advanced retinal degeneration and are promising for regenerative medicine in the central nervous system.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/terapia , Reprodutibilidade dos Testes , Retina , Células Ganglionares da Retina/fisiologia , Visão Ocular , Camundongos Transgênicos
4.
Curr Biol ; 32(18): 3987-3999.e4, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35973431

RESUMO

Visual information reaches cortex via the thalamic dorsal lateral geniculate nucleus (dLGN). dLGN activity is modulated by global sleep/wake states and arousal, indicating that it is not simply a passive relay station. However, its potential for more specific visuomotor integration is largely unexplored. We addressed this question by developing robust 3D video reconstruction of mouse head and body during spontaneous exploration paired with simultaneous neuronal recordings from dLGN. Unbiased evaluation of a wide range of postures and movements revealed a widespread coupling between neuronal activity and few behavioral parameters. In particular, postures associated with the animal looking up/down correlated with activity in >50% neurons, and the extent of this effect was comparable with that induced by full-body movements (typically locomotion). By contrast, thalamic activity was minimally correlated with other postures or movements (e.g., left/right head and body torsions). Importantly, up/down postures and full-body movements were largely independent and jointly coupled to neuronal activity. Thus, although most units were excited during full-body movements, some expressed highest firing when the animal was looking up ("look-up" neurons), whereas others expressed highest firing when the animal was looking down ("look-down" neurons). These results were observed in the dark, thus representing a genuine behavioral modulation, and were amplified in a lit arena. Our results demonstrate that the primary visual thalamus, beyond global modulations by sleep/awake states, is potentially involved in specific visuomotor integration and reveal two distinct couplings between up/down postures and neuronal activity.


Assuntos
Corpos Geniculados , Tálamo , Animais , Nível de Alerta , Corpos Geniculados/fisiologia , Camundongos , Movimento , Neurônios/fisiologia , Tálamo/fisiologia , Vias Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA