Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(11): 4161-4179, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33595636

RESUMO

Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration.


Assuntos
Dessecação , Raios Ultravioleta , Biologia , Clorofila , Ecossistema , Fotossíntese
2.
Am J Bot ; 108(2): 249-262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249553

RESUMO

PREMISE: Desiccation tolerance (DT) is a widespread phenomenon among land plants, and variable ecological strategies for DT are likely to exist. Using Syntrichia caninervis, a dryland moss and model system used in DT studies, we hypothesized that DT is lowest in juvenile (protonemal) tissues, highest in asexual reproductive propagules (gemmae), and intermediate in adults (shoots). We tested the long-standing hypothesis of an inherent constitutive strategy of DT in this species. METHODS: Plants were rapidly dried to levels of equilibrating relative humidity (RHeq) ranging from 0 to 93%. Postrehydration recovery was assessed using chlorophyll fluorescence, regeneration rates, and visual tissue damage. For each life phase, we estimated the minimum rate of drying (RoDmin ) at RHeq = 42% that did not elicit damage 24 h postrehydration. RESULTS: DT strategy varied with life phase, with adult shoots having the lowest RoDmin (10-25 min), followed by gemmae (3-10 h) and protonema (14-20 h). Adult shoots exhibited no detectable damage 24 h postrehydration following a rapid-dry only at the highest RHeq used (93%), but when dried to lower RHs the response declined to <50% of control fluorescence values. Notably, immediately following rehydration (0 h postrehydration), shoots were damaged below control levels of fluorescence regardless of the RHeq, thus implicating damage. CONCLUSIONS: Life phases of the moss S. caninervis had a range of strategies from near constitutive (adult shoots) to demonstrably inducible (protonema). A new response variable for assessing degree of DT is introduced as the minimum rate of drying from which full recovery occurs.


Assuntos
Briófitas , Bryopsida , Dessecação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA