Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643117

RESUMO

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Neuritos/fisiologia , Axônios/fisiologia , Neurônios
2.
Sci Rep ; 14(1): 3421, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341449

RESUMO

Adding foreign ions to hydroxyapatite (HAp) is a popular approach for improving its properties. This study focuses on the effects of calcium substitution with copper in HAp. Instead of calcium, copper ions were doped into the structure of hydroxyapatite nanoparticles at 1%, 3%, and 5% concentrations. XRD analysis showed that the amount of substituted copper was less than needed to generate a distinct phase, yet its lattice parameters and crystallinity slightly decreased. Further, the results of degradation tests revealed that copper doping in hydroxyapatite doubled calcium ion release in water. The incorporation of copper into the apatite structure also boosted the HAp zeta potential and FBS protein adsorption onto powders. According to antibacterial investigations, a concentration of 200 mg/ml of hydroxyapatite containing 5% copper was sufficient to effectively eradicate E. coli and S. aureus bacteria. Furthermore, copper improved hydroxyapatite biocompatibility. Alkaline phosphatase activity and alizarin red tests showed that copper in hydroxyapatite did not inhibit stem cell differentiation into osteoblasts. Also, the scratch test demonstrated that copper-containing hydroxyapatite extract increased HUVEC cell migration. Overall, our findings demonstrated the utility of incorporating copper into the structure of hydroxyapatite from several perspectives, including the induction of antibacterial characteristics, biocompatibility, and angiogenesis.


Assuntos
Durapatita , Nanopartículas , Durapatita/química , Cobre/química , Cálcio , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Íons
3.
Regen Ther ; 25: 10-23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108045

RESUMO

Premature ovarian insufficiency (POI), also known as premature ovarian failure (POF), is a complex endocrine disease that commonly affects women under the age of 40. It is characterized by the cessation of ovarian function before the age of 40, leading to infertility and hormonal imbalances. The currently available treatment options for POI are limited and often ineffective. Tissue engineering and stem cell-based therapeutic strategies have emerged as promising approaches to restore ovarian function and improve the quality of life for women affected by POI. This review aims to provide a comprehensive overview of the types of stem cells and biomaterials used in the treatment of POI, including their biological characteristics and mechanisms of action. It explores various sources of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, and their potential applications in regenerating ovarian tissue. Additionally, this paper discusses the development of biomaterials and scaffolds that mimic the natural ovarian microenvironment and support the growth and maturation of ovarian cells and follicles. Furthermore, the review highlights the challenges and ethical considerations associated with tissue engineering and stem cell-based therapies for POI and proposes potential solutions to address these issues. Overall, this paper aims to provide a comprehensive overview of the current state of research in tissue engineering and stem cell-based therapeutic strategies for POI and offers insights into future directions for improving treatment outcomes in this debilitating condition.

4.
Basic Clin Neurosci ; 14(4): 443-451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050575

RESUMO

Introduction: Spinal cord injury (SCI) is characterized by serious both motor and sensory disability of the limbs below the injured segment. It is the most traumatic disorder among central nervous system (CNS) conditions which not only leads to psychological and physical harm to patients but also results in a dramatic loss in the life quality. Many efforts have been developed to find a therapeutic approach for SCI; however, an effective treatment has not yet been found. The lack of effective treatment approach and rehabilitation of SCI underscores the need to identify novel approaches. Tissue engineering associated with stem cells has been recently introduced as an effective treatment approaches for traumatic SCI. Although, low survival rates, immune rejection, cell dedifferentiation, and tumorigenicity have been addressed for tissue engineering. Regenerative medicine is an interdisciplinary field developing and applying tissue engineering, stem cell (SC) therapy, and SC-derived extracellular vesicle therapy that aims to provide reliable and safe ways to replace injured tissues and organs. The application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) has recently attracted attention to improve central nervous system dysfunction such as SCI, mainly by promoting neurogenesis and angiogenesis. Methods: In this review article the latest information of SCI improvement using stem cell-derived extracellular vesicles published data in the Web of Science, Scopus, Science Direct and Pub Med databases were collected. Results: The data collected show that MSC-EVs, including exosomes, alone or in combination with scaffolds can can regenerate the injured nerve in SCI. Conclusion: This study summarizes the efficacy of MSC-EVs, including exosomes, alone or in combination with scaffolds in the treatment of SCI and then discusses the therapeutic outcomes observed in SCI experimental models following treatment with MSC-EVs alone or loaded on scaffolds in particular collagen-based scaffolds. Highlights: The pathological process of SCI being very complex.A complete effective strategy has yet to be found for treatment of SCI in human.Exosomes derived-stem cells alone have great potential for the treatment of SCI.Various biocompatible scaffolds are good drug carriers for SCI treatment.Various biocompatible scaffolds are good carriers for exosomes. Plain Language Summary: Human with spinal cord injury (SCI) show serious motor and sensory disability of the limbs. Since there is no an effective treatment for SCI, researchers are trying to develop and find a new therapeutic approach for SCI. CNS tissue engineering with various stem cells sources as well as their derived extracellular vesicle has been extensively attracted for providing reliable and safe approach for SCI treatment. Extracellular vesicles are lipid bilayer membrane-enclosed organelles containing various biomolecules involved in a variety of complex intercellular communication systems. They are released from all cell types into their surrounding environment and are important vehicles for paracrine The application of stem cells-derived extracellular vesicles (MSC-EVs) has recently attracted attention to improve central nervous system dysfunction such as SCI, mainly by promoting neurogenesis and angiogenesis.

5.
Stem Cell Res Ther ; 14(1): 254, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726794

RESUMO

Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function in the areas in which injured and non-injured nerves come together. Up until now, there has been no optimized therapy for complete nerve regeneration after PNI. Exosome-based therapies are an emerging and effective therapeutic strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain bioactive molecules for intracellular communications and nervous tissue function, which could overcome the challenges of cell-based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)-derived exosomes in nerve tissue regeneration. Also, we expressed the current understanding of MSC-derived exosomes related to nerve regeneration and provided insights for developing a cell-free MSC therapeutic strategy for nerve injury.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Terapia Baseada em Transplante de Células e Tecidos
6.
Bioimpacts ; 13(3): 229-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431484

RESUMO

Introduction: Human endometrial mesenchymal stem cells (hEnMSCs) are a rich source of mesenchymal stem cells (MSCs) with multi-lineage differentiation potential, making them an intriguing tool in regenerative medicine, particularly for the treatment of reproductive and infertility issues. The specific process of germline cell-derived stem cell differentiation remains unknown, the aim is to study novel ways to achieve an effective differentiation method that produces adequate and functioning human gamete cells. Methods: We adjusted the optimum retinoic acid (RA) concentration for enhancement of germ cell-derived hEnSCs generation in 2D cell culture after 7 days in this study. Subsequently, we developed a suitable oocyte-like cell induction media including RA and bone morphogenetic protein 4 (BMP4), and studied their effects on oocyte-like cell differentiation in 2D and 3D cell culture media utilizing cells encapsulated in alginate hydrogel. Results: Our results from microscopy analysis, real-time PCR, and immunofluorescence tests revealed that 10 µM RA concentration was the optimal dose for inducing germ-like cells after 7 days. We examined the alginate hydrogel structural characteristics and integrity by rheology analysis and SEM microscope. We also demonstrated encapsulated cell viability and adhesion in the manufactured hydrogel. We propose that in 3D cell cultures in alginate hydrogel, an induction medium containing 10 µM RA and 50 ng/mL BMP4 can enhance hEnSC differentiation into oocyte-like cells. Conclusion: The production of oocyte-like cells using 3D alginate hydrogel may be viable in vitro approach for replacing gonad tissues and cells.

7.
ACS Biomater Sci Eng ; 9(6): 3496-3511, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37159418

RESUMO

Nerve guide conduits (NGCs) have been shown to be less efficient than nerve autografts in peripheral nerve regeneration. To address this issue, we developed for the first time a novel tissue-engineered nerve guide conduit structure encapsulated with human endometrial stem cell (EnSC) derived exosomes, which promoted nerve regeneration in rat sciatic nerve defects. In this study, we initially indicated the long-term efficacy and safety impacts of newly designed double layered SF/PLLA nerve guide conduits. Then the regeneration effects of SF/PLLA nerve guide conduits containing exosomes derived from human EnSCs were evaluated in rat sciatic nerve defects. The human EnSC derived exosomes were isolated from the supernatant of human EnSC cultures and characterized. Subsequently, the human EnSC derived exosomes were encapsulated in constructed NGCs by fibrin gel. For in vivo studies, entire 10 mm peripheral nerve defects were generated in rat sciatic nerves and restored with NGC encapsulated with human EnSC derived exosomes (Exo-NGC group), nerve guide conduits, and autografts. The efficiency of the NGCs encapsulated with human EnSCs derived exosomes in assisting peripheral nerve regeneration was investigated and compared with other groups. The in vivo results demonstrated that encapsulated human EnSC derived exosomes in NGC (Exo-NGC) significantly benefitted nerve regeneration based on motor function, sensory reaction, and electrophysiological results. Furthermore, immunohistochemistry with histopathology results showed the formation of regenerated nerve fibers, along with blood vessels that newly were developed, as a result of the exosome functions in the Exo-NGC group. These outcomes illustrated that the newly designed core-shell SF/PLLA nerve guide conduit encapsulated with human EnSC derived exosomes enhanced the regeneration process of axons and improved the functional recovery of rat sciatic nerve defects. So, encapsulated human EnSC-derived exosomes in a core-shell SF/PLLA nerve guide conduit are a potential therapeutic cell-free treatment for peripheral nerve defects.


Assuntos
Exossomos , Fibroínas , Regeneração Tecidual Guiada , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Regeneração Tecidual Guiada/métodos , Nervo Isquiático/patologia , Nervo Isquiático/fisiologia , Alicerces Teciduais/química , Regeneração Nervosa/fisiologia
8.
Behav Brain Res ; 444: 114360, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36854364

RESUMO

Mesenchymal stem cells (MSCs) have been recently shown to improve functional recovery in animal models of CNS disorders and are currently being examined in clinical studies for sclerosis, stroke, and CNS lesions. The activation of endogenous CNS protection and repair mechanisms is unclear. MSC-based approaches are considered a new potential target for neurodegenerative disorders. This study was designed to discover the effect of MSCs injection in the nucleus accumbens (NAc) on the reinstatement of behavior in morphine-induced conditioned place preference (CPP) in male rats. The CPP was induced via intra-peritoneal (i.p.) morphine injection (5 mg/kg) for three consecutive days. After being tested for CPP induction, animals received MSCs or culture medium (DMEM F-12) in their NAc using stereotaxic surgery. Following extinction, a priming dose of morphine (2 mg/kg) was administered to induce reinstatement. Expression of GluN1, GluN2A, and GluN2B subunits of the NMDA receptor and the NT-3 gene in the NAc was assessed on the last day of extinction and following CPP reinstatement. The results showed that local injection of MSCs attenuated reinstatement after receiving a priming dose of morphine, and also shortened the period of CPP extinction. The mRNA expression of the NT-3 gene in the group receiving MSCs was increased compared to control animals, as was observed for GluN1 and GluN2B, but not GluN2A. It is concluded that intra-NAc injection of MSCs may facilitate morphine extinction and alleviate reinstatement behavior which may be via expression changes in NMDA receptor subunits and NT-3 gene.


Assuntos
Morfina , Núcleo Accumbens , Ratos , Masculino , Animais , Morfina/farmacologia , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Extinção Psicológica/fisiologia
9.
Cell Tissue Bank ; 24(1): 75-91, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35641803

RESUMO

Parkinson disease (PD) is considered as one of the most worldwide neurodegenerative disorders. The major reasons associated to neurodegeneration process of PD pathogenesis are oxidative stress. Many studies reported that natural antioxidant molecules, especially, curcumin can suppress inflammatory pathways and preserve dopaminergic neurons damage in PD. Further, the poor pharmacokinetics, instability of chemical structure because of fast hydrolytic degradation at physiologic condition and especially, the presence of the blood brain barrier (BBB) has regarded as a considerable restriction factor for transfer of neurotherapeutic molecules to the brain tissue. The present research aims to the fabrication of nanoformulated curcumin loaded human endometrial stem cells derived exosomes (hEnSCs EXOs-Cur) to study on enhancing curcumin penetration to the brain across BBB and to improve anti- Parkinsonism effects of curcumin against neural death and alpha-synuclein aggregation. hEnSCs EXOs-Cur characterization results demonstrated the accurate size and morphology of formulated curcumin loaded exosomes with a proper stability and sustained release profile. In vivo studies including behavioral, Immunohistochemical and molecular evaluations displayed that novel formulation of hEnSCs EXO-Cur is able to cross BBB, enhance motor uncoordinated movements, suppress the aggregation of αS protein and rescue neuronal cell death through elevation of BCL2 expression level as an anti-apoptotic protein and the expression level reduction of BAX and Caspase 3 as apoptotic markers.


Assuntos
Curcumina , Exossomos , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapêutico , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Exossomos/metabolismo , Modelos Animais de Doenças
10.
J Polym Environ ; 31(3): 870-885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36373108

RESUMO

Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.

11.
Iran J Biotechnol ; 21(3): e3505, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38344702

RESUMO

Background: Mesenchymal stem cell (MSC) derived exosomes (MSC-DE) have been demonstrated to be potential candidates for the treatment of rat spinal cord injury (SCI). Objective: The effect of AD-MSC and AD-MSC-DE encapsulated into collagen and fibrin hydrogels on the treatment of SCI in a rat animal model was investigated for introducing a new effective SCI treatment method. Materials and Methods: The AD-MSC-DE was isolated using ultra-centrifugation at 100,000×g for 120 min and characterized by different methods. Fibrin and collagen hydrogels were synthesized and then mixed with AD-MSC-DE suspension. the characterized AD-MSC-DE were encapsulated into collagen and fibrin hydrogels. eighteen adult male Wister rats were randomly classified into 3 equal groups (n=6): the control group (SCI rat without treatment), SCI rat treated with either AD-MSC-DE encapsulated in collagen hydrogel or encapsulated in fibrin hydrogel groups. the treatment approaches were evaluated using clinical, histological, and molecular assays. Results: The AD-MSC-DE encapsulated into fibrin and collagen groups showed better clinical function than the control group. The AD-MSC-DE encapsulated into fibrin and collagen also improved SCI-induced polio and leuko-myelomalacia and leads to higher expression of NF protein than the control group. In the AD-MSC-DE encapsulated into collagen and fibrin leads to up-regulation the mean levels of NEFL (23.82 and 24.33, respectively), eNOS (24.31 and 24.53, respectively), and CK19 mRNAs (24.23 and 23.98, respectively) compared to the control group. Conclusion: The AD-MSC-DE encapsulated within ECM-based hydrogel scaffolds such as collagen and fibrin can regenerate the injured nerve in SCI rats and reduce spinal cord lesion-induced central neuropathic pain.

12.
Front Cell Neurosci ; 16: 993019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505513

RESUMO

Bone-marrow mesenchymal stem cells (BM-MSCs) have not yet proven any significant therapeutic efficacy in spinal cord injury (SCI) clinical trials, due to the hostile microenvironment of the injured spinal cord at the acute phase. This study aims to modulate the inflammatory milieu by lipopolysaccharide (LPS) and granulocyte colony-stimulating factor (G-CSF) to improve the BM-MSCs therapy. For this purpose, we determined the optimum injection time and sub-toxic dosage of LPS following a T10 contusion injury. Medium-dose LPS administration may result in a local anti-inflammatory beneficial role. This regulatory role is associated with an increase in NF-200-positive cells, significant tissue sparing, and improvement in functional recovery compared to the SCI control group. The second aim was to examine the potential ability of LPS and LPS + G-CSF combination therapy to modulate the lesion site before BM-MSC (1 × 105 cells) intra-spinal injection. Our results demonstrated combination therapy increased potency to enhance the anti-inflammatory response (IL-10 and Arg-1) and decrease inflammatory markers (TNF-α and CD86) and caspase-3 compared to BM-MSC monotherapy. Histological analysis revealed that combination groups displayed better structural remodeling than BM-MSC monotherapy. In addition, Basso-Beattie-Bresnahan (BBB) scores show an increase in motor recovery in all treatment groups. Moreover, drug therapy shows faster recovery than BM-MSC monotherapy. Our results suggest that a sub-toxic dose of LPS provides neuroprotection to SCI and can promote the beneficial effect of BM-MSC in SCI. These findings suggest that a combination of LPS or LPS + G-CSF prior BM-MSC transplantation is a promising approach for optimizing BM-MSC-based strategies to treat SCI. However, because of the lack of some methodological limitations to examine the survival rate and ultimate fate of transplanted BM-MSCs followed by LPS administration in this study, further research needs to be done in this area. The presence of only one-time point for evaluating the inflammatory response (1 week) after SCI can be considered as one of the limitations of this study. We believed that the inclusion of additional time points would provide more information about the effect of our combination therapy on the microglia/macrophage polarization dynamic at the injured spinal cord.

13.
Bioimpacts ; 12(5): 439-448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381637

RESUMO

Introduction: Inflammation is one of the most important mechanisms involved in cisplatin-induced acute kidney injury (AKI). Mesenchymal stromal/stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory abilities. Human endometrial stromal/stem cells (hEnSCs) exhibit similar properties to MSCs. These cells secrete immunoregulators, so we investigated the inflammatory aspect of hEnSCs in the treatment of cisplatin-induced AKI in Wistar rats. Methods: Each group consisted of 6 male Wistar rats. Groups were as follows: sham, model (5 mg/kg cisplatin, IP), and treatment (1 million hEnSCs, IV, 3 hours after cisplatin). Renal function, histopathology, proliferation rate, infiltration of CD3+ T cell, and expression of Il-10 and cystatin c (Cst3) were assessed on day 5. DiI-labeled cells were tracked in kidney and liver on days 4 and 14. Results: HEnSC transplantation improved cisplatin-induced injuries such as renal dysfunction and tissue damage. The highest levels of pathologic scores and hyaline cast formation were observed in the model group while hEnSCs transplantation resulted in their reduction (154.00 ± 14.95, 8.00 ± 1.41 vs. 119.40 ± 5.43, 2.50 ± 1.05). The percentage of Ki-67 positive cells in the treatment group increased while cisplatin decreased proliferation (39.91 ± 5.33 vs. 23.91 ± 3.57 in glomeruli and 39.07 ± 2.95 vs. 16.61 ± 3.25 in tubules). The expression of Cst3 and Il-10 was higher in the model and treatment groups, respectively. DiI-labeled cells were observed in the renal tubules and liver lobes on days 4 and 14. Conclusion: HEnSCs may ameliorate cisplatin-induced AKI through anti-inflammatory and immunomodulatory effects and/or through paracrine effects.

14.
Regen Ther ; 21: 424-435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274680

RESUMO

Reconstruction of nerve conduits is a promising method for functional improvement in peripheral nerve repair. Besides choosing of a suitable polymer for conduit construction, adding factors such as Taurine improve a more advantageous microenvironment for defect nerve regeneration. Showing several major biological properties of Taurine, for example, regulation of the osmotic pressure, modulation of neurogenesis, and calcium hemostasis, makes it an appropriate option for repairing of defected nerves. To this, we examined repairing effects of Taurine-loading PCL conduits cultured with human endothelial stem cells (hEnSCs) on resected sciatic nerves. PCL/Taurine/Cell conduits transplanted to a 10-mm sciatic nerve gap. Forty-two wistar rats were randomly divided to seven groups: (1) Normal group, (2) Negative control (NC), (3) Positive control (nerve Autograft group), (4) PCL conduits group (PCL), (5) Taurine loaded PCL conduits group (PCL/Taurine), (6) hEnSCs cultured on the PCL conduits (PCL/Cell), (7) hEnSCs cultured on the PCL/Taurine conduits (PCL/Taurine/Cell). Functional recovery of motor and sensory nerves, the action potential of exciting muscle and motor distal latency has seen in PCL/Taurine/Cell conduits. Histological studies showed also remarkable nerve regeneration and obvious bridging has seen in this group. In conclusion, PCL/Taurine/Cell conduits showing suitable mechanical properties and biocompatibility may improve sciatic nerve regeneration.

15.
Prog Biomater ; 11(4): 385-396, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271317

RESUMO

Osteoarthritis (OA) is the most common form of degenerative joint disease, affecting more than 25% of the adults despite its prevalence in the elderly population. Most of the current therapeutic modalities aim at symptomatic treatment which lingers the disease progression. In recent years, regenerative medicine such as stem cell transplantation and tissue engineering has been suggested as a potential curative intervention for OA. The objective of this current study was to assess the safety and efficacy of an injectable tissue-engineered construct composed of rat bone marrow mesenchymal stem cells (rBMMSCs), platelet-rich plasma (PRP), and collagen type I in rat model of OA. To produce collagen type I, PRP and rBMMSCs, male Wistar rats were ethically euthanized. After isolation, culture, expansion and characterization of rBMMSCs, tissue-engineered construct was formed by a combination of appropriate amount of collagen type I, PRP and rBMMSCs. In vitro studies were conducted to evaluate the effect of PRP on chondrogenic differentiation capacity of encapsulated cells. In the following, the tissue-engineered construct was injected in knee joints of rat models of OA (24 rats in 4 groups: OA, OA + MSC, OA + collagen + MSC + PRP, OA + MSC + collagen). After 6 weeks, the animals were euthanized and knee joint histopathology examinations of knee joint samples were performed to evaluate the effect of each treatment on OA. Tissue-engineered construct was successfully manufactured and in vitro assays demonstrated the relevant chondrogenic genes and proteins expression were higher in PRP group than that of others. Histopathological findings of the knee joint samples showed favorable regenerative effect of rBMMSCs + PRP + collagen group compared to others. We introduced an injectable tissue-engineered product composed of rBMMSCs + PRP + collagen with potential regenerative effect on cartilage that has been damaged by OA.

16.
Cell J ; 24(10): 555-568, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259473

RESUMO

Angiogenesis is a characteristic of glioblastoma (GBM), the most fatal and therapeutic-resistant brain tumor. Highly expressed angiogenic cytokines and proliferated microvascular system made anti-angiogenesis treatments a thoroughly plausible approach for GBM treatment. Many trials have proved to be not only as a safe but also as an effective approach in GBM retardation in a certain time window as seen in radiographic response rates; however, they have failed to implement significant improvements in clinical manifestation whether alone or in combination with radio/chemotherapy. Bevasizumab, an anti-vascular endothelial growth factor-A (VEGF-A) antibody, is the only agent that exerts meaningful clinical influence by improving progression-free survival (PFS) and partially alleviate clinical symptoms, nevertheless, it could not prolong the overall survival (OS) in patients with GBM. The data generated from phase II trials clearly revealed a correlation between elevated reperfusion, subsequent to vascular normalization induction, and improved clinical outcomes which explicitly indicates anti-angiogenesis treatments are beneficial. In order to prolong these initial benefits observed in a certain period of time after anti-angiogenesis targeting, some aspects of the therapy should be tackled: recognition of other bypass angiogenesis pathways activated following antiangiogenesis therapy, identification of probable pathways that induce insensitivity to shortage of blood supply, and classifying the patients by mapping their GBM-related gene profile as biomarkers to predict their responsiveness to therapy. Herein, the molecular basis of brain vasculature development in normal and tumoral conditions is briefly discussed and it is explained how "vascular normalization" concept opened a window to a better comprehension of some adverse effects observed in anti-angiogenesis therapy in clinical condition. Then, the most targeted angiogenesis pathways focused on ligand/receptor interactions in GBM clinical trials are reviewed. Lastly, different targeting strategies applied in anti-angiogenesis treatment are discussed.

17.
Front Cell Dev Biol ; 10: 834754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676930

RESUMO

As an evidence-based performance, the rising incidence of various ischemic disorders has been observed across many nations. As a result, there is a growing need for the development of more effective regenerative approaches that could serve as main therapeutic strategies for the treatment of these diseases. From a cellular perspective, promoted complex inflammatory mechanisms, after inhibition of organ blood flow, can lead to cell death in all tissue types. In this case, using the stem cell technology provides a safe and regenerative approach for ischemic tissue revascularization and functional cell formation. Limb ischemia (LI) is one of the most frequent ischemic disease types and has been shown to have a promising regenerative response through stem cell therapy based on several clinical trials. Bone marrow-derived mononuclear cells (BM-MNCs), peripheral blood CD34-positive mononuclear cells (CD34+ PB-MNCs), mesenchymal stem cells (MSCs), and endothelial stem/progenitor cells (ESPCs) are the main, well-examined stem cell types in these studies. Additionally, our investigations reveal that endometrial tissue can be considered a suitable candidate for isolating new safe, effective, and feasible multipotent stem cells for limb regeneration. In addition to other teams' results, our in-depth studies on endometrial-derived stem cells (EnSCs) have shown that these cells have translational potential for limb ischemia treatment. The EnSCs are able to generate diverse types of cells which are essential for limb reconstruction, including endothelial cells, smooth muscle cells, muscle cells, and even peripheral nervous system populations. Hence, the main object of this review is to present stem cell technology and evaluate its method of regeneration in ischemic limb tissue.

18.
Front Cell Dev Biol ; 10: 895284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721501

RESUMO

Natural killer (NK) cells are innate lymphocytes that can kill tumor cells via different pathways, including the secretion of cytotoxic granules in immunological synapses and the binding of apoptosis-inducing ligands with cognate death receptors on tumor cells. These ligands are also soluble in NK cells conditioned medium (NK-CM). However, novel preclinical in vitro models are required for solid tumors such as colorectal cancer (CRC) to investigate apoptosis induction of activated NK-CM in a tissue-like structure. In the present study, we established a patient-derived CRC organoid culture system as a new tool for CRC research in the last decade. Tumor organoids were stained with hematoxylin and eosin (H&E) and compared with the original tumor taken from the patient. Goblet cell differentiation and mucus secretion were evaluated using periodic acid-Schiff and alcian blue histochemical staining. Moreover, tumor organoids were stained for CDX2 and Ki67 markers with immunohistochemistry (IHC) to investigate gastrointestinal origin and proliferation. Histopathological evaluations indicated tumor organoids represent patient tumor characteristics. Primary NK cells were isolated and characterized using CD56 marker expression and the lack of the CD3 marker. Flow cytometry results showed the purity of isolated CD3-and CD56 + NK cells about 93%. After further ex vivo expansion, IL-2-activated NK-CM was collected. Secretions of IFN-γ and TNF-α were measured to characterize activated NK-CM. Cytokines levels were significantly elevated in comparison to the control group. Soluble forms of apoptosis-inducing ligands, including TNF-related apoptosis-inducing ligand (TRAIL) and FasL, were detected by western blot assay. Colon cancer organoids were treated by IL-2-activated NK-CM. Apoptosis was assessed by Annexin V-FITC/PI staining and quantified by flow cytometry. In conclusion, despite the activated NK-CM containing apoptosis-inducing ligands, these ligands' soluble forms failed to induce apoptosis in patient-derived colon cancer organoids. Nevertheless, we report a reliable in vitro assessment platform in a personalized setting.

19.
Tissue Cell ; 77: 101849, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728334

RESUMO

Copper (Cu) ions have been found to exert antibacterial and angiogenic effects. However, some studies have indicated that it inhibits osteogenesis at high concentrations. On the other hand, L-arginine (Arg) is a semi-essential amino acid required for various biological processes, including osteogenic and angiogenic activities. As a result, we hypothesized that combining Arg with Cu ions would reduce its inhibitory effects on osteogenesis while increasing its angiogenic and antibacterial capabilities. To assess osteogenic and angiogenic activities, we employed rat bone marrow mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs), respectively. The gram-positive bacteria Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), and the gram-negative bacterium Escherichia coli (E. coli) were used to investigate bacterial behaviors. According to ALP activity and calcium deposition outcomes, copper ions inhibited osteogenic development of MSCs at 100 µM; however, Arg supplementation somewhat mitigated the inhibitory effects. Furthermore, Copper and Arg synergistically stimulated migration and tube formation of HUVECs. According to our findings, copper ions and Arg in the range of 1-100 µM had no antibacterial effect on any examined bacteria. However, at a dose of 20 mM, copper demonstrated antibacterial activity, which was boosted by Arg. Overall, these findings suggest that a combination of copper and Arg may be more beneficial for bone regeneration than either copper or Arg alone.


Assuntos
Cobre , Osteogênese , Animais , Antibacterianos/farmacologia , Arginina/farmacologia , Cobre/química , Cobre/farmacologia , Escherichia coli , Células Endoteliais da Veia Umbilical Humana , Humanos , Íons , Ratos , Staphylococcus aureus
20.
Asian Pac J Cancer Prev ; 23(3): 867-875, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35345358

RESUMO

OBJECTIVE: Atorvastatin is commonly used as a lipid lowering drug. The emerging interest in  statins as anticancer agents is based on their pleiotropic effects on cancer cells. Among the statins, atorvastatin, and in cancers, breast malignancies have received less attention in preclinical investigations. In order to enhance the efficacy of cancer treatment,  adjuvant, less expensive therapeutic strategies have been recently noticed. In this case, we investigated the in-vitro effect of atorvastatin on viability and migration of MCF7 breast cancer cell line. METHODS: We tested the cytotoxicity of atorvastatin on breast cancer cells survival by MTT assay. Annexin-V / PI staining and then flow cytometry of cancer cells in addition to quantitative real-time PCR tests quantified the apoptosis and necrosis of cancer cells. We figured out the impact of atorvastatin on cancer cell migration capability through scratch-wound healing assay and transwell migration examination. Inverted light microscope and fluorescent imaging displayed the morphological changes following treatment of MCF7 cells with atorvastatin. RESULT: We resulted that atorvastatin can trigger MCF7 cancer cells to undergo necrosis and caspase-dependent apoptosis based on the viable/dead cell number, mitotic cell cycle, gene expression, and morphological assays. The results were dose- and time-dependent and the half- maximal inhibitory concentration of atorvastatin for cancer cells' viability inhibition was 9.1 µM/L(nM/mL). Moreover, the migration of MCF7 cells were inhibited in the treated group as we figured out in two- and three-dimensional migration methods. CONCLUSION: In-vitro inspection of drug-cancer cell interactions paves the way  for future in-vivo research studies. These in-vitro results revealed that atorvastatin has anti-viability and anti-migration effects on breast cancer cells.


Assuntos
Neoplasias da Mama , Apoptose , Atorvastatina/farmacologia , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA