Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1082-1095, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148284

RESUMO

In this work, we present a methodology to create an effective novel double-sided symmetric architecture of solid-state electrochromic devices. This principally new nonconventional configuration provides access to novel electrochromic systems that could be applicable for the creation of smart double-side signage, smart boards, nonemissive displays, and other smart interactive devices that change their color upon application of a voltage. The proposed configuration is based on the assembly of two identical electrochromic materials facing each other through an opaque optical separator. As a proof of concept, we use an electrochromic material based on bis(4'-(pyridin-4-yl)-2,2':6',2″-terpyridine) iron complex, covalently immobilized on screen-printed surface-extended ITO support. The symmetric configuration allows for a drastic enhancement of the overall stability of the device due to both attenuation of the counter electrode polarization and minimization of electrolyte decomposition. A nontransparent ion-permeable separator, in turn, allows observing the color change of only one of the electrodes by cutting off the optical contribution of the electrode located behind it. Further functionalization of the electrochromic material with a thin layer of Nafion is a beneficial strategy to significantly boost up long-term durability of the devices. Applying a layer of Nafion to the electrochromic material results in an increase in ionic conductivity within the device and ensures better retention of electrochromic molecules on the surface, thus minimizing device decomposition during long-term electrochemical cycling. An electrochromic device that bears Nafion-functionalized electrodes can operate (i) in the dual-side mode, where both sides demonstrate effective electrochromic performance; or (ii) in a one-side manner, where only one side of the device changes color. Notably, when operating in the one-side mode, the device withstands 70,000 cycles, after which the performance of the device can be resumed by simply turning the device to the other side (via switching the polarity of the electrodes).

2.
Analyst ; 148(18): 4300-4309, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37591808

RESUMO

Blood is a commonly encountered type of biological evidence and can provide critical information about the crime that occurred. The ability to accurately and precisely determine the time since deposition (TSD) of a bloodstain is highly sought after in the field of forensic science. Current spectral methods for determining TSD are typically developed using small volume bloodstains, we investigate the applicability to larger volume blood pools where drying and degradation mechanics are different. We explored the differences that exist between the surface and bulk of dried segments from fragments collected from 15 mL dried blood pools and identified heterogeneity using RGB colour analysis and hierarchical cluster analysis (HCA). The physical, molecular, and atomic differences between the layers were further investigated using scanning electron microscopy (SEM), X-Ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy. SEM identified different morphology on the surface and the bulk indicative of density-dependant cellular settling. XPS revealed that iron was not present on the surface but rather was present in the bulk where the red blood cells had settled. The oxidation state of the iron was quantified over three weeks in which it transitioned from entirely Fe2+ to primarily Fe3+, as expected for ex vivo degradation of hemoglobin. Further, indications of amide saponification occurring at the blood-air interface were identified in the increased quantity of the C-O moiety relative to CO, and the formation of free amines and OC-ONa groups over time. ATR-FTIR and Raman spectroscopy provided insights into differences in the molecular composition of the layers, suggesting that the surface consists of more nucleic acids, lipids, and glycoproteins than the bulk, which was dominated by proteins (p < 0.001% using principal component analysis (PCA)). Additionally, spectral band trends previously reported to have applicability to the estimation of TSD were observed for the bulk portion of the blood pool as the Hb underwent predictable time dependant changes from oxyHb to metHb. PCA was performed based on all spectral data which demonstrated statistically significant differences between the surface and bulk, as well as proof-of-concept for linear TSD estimation models.


Assuntos
Amidas , Eritrócitos , Aminas , Análise por Conglomerados , Ciências Forenses
3.
ACS Appl Mater Interfaces ; 13(33): 39573-39583, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378920

RESUMO

We report here on the strategy for the preparation of a series of electrochromic (EC) materials in green shades designed for camouflage purposes. This top-down post-synthetic modification provides access to new EC materials by fine modulation of the color of the surface-confined metalorganic monolayer pre-deposited on indium tin oxide screen-printed supports. Selective on-surface N-quaternization of the outer pyridine unit of the EC metal complex covalently embedded onto an enhanced surface area electrode results in a bathochromic shift of the absorbance signal as well as visual color change from blue to different shades of green. When assembled into solid-state EC devices (ECDs), the materials demonstrate high color differences between colored and bleached states and significant differences in optical density. Upon electrochemical switching, the ECDs initially featuring different shades of green become yellowish or clay. The accessible gamut of colors, fulfilling the requirements for chameleon-like camouflage materials, is able to mimic conditions of various natural environments including forests and sands. Notably, ECDs demonstrate high long-term durability (95% retention of the performance after 3300 cycles), fast coloration (0.6-1.1 s), and bleaching (1.2-3.3 s) times and outstanding coloration efficiencies of 1018-1513 cm2/C. Importantly, post-synthetic N-quaternization/color tuning does not deteriorate the performance of the resulting EC materials and devices as judged by cyclic voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. This work adds to the limited number of reports that explore color tuning of EC molecular layers via on-surface modification with the aim to access new non-symmetric materials. Notably, the facile and straightforward technology presented here allows the creation of green-colored EC materials that are difficult to prepare in other ways.

4.
ACS Appl Mater Interfaces ; 12(37): 41749-41757, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32870639

RESUMO

The article describes novel electrochromic materials (ECMs) that are based on a monolayer consisting of two or three isostructural metal complexes of 4'-(pyridin-4-yl)-2,2':6',2''-terpyridine simultaneously deposited on surface-enhanced support. The support was made by screen printing of indium tin oxide (ITO) nanoparticles on ITO-glass and has a surface area sufficient for a monolayer to give color visible to the naked eye. The ability to separately electrochemically address the oxidation state of the metal centers on the surface (i.e., Co2+/Co3+, Os2+/Os3+, and Fe2+/Fe3+) provides an opportunity to achieve several distinct color-to-color transitions, thus opening the door for constructing monolayer-based multicolor ECMs.

5.
ACS Appl Mater Interfaces ; 10(41): 35334-35343, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30230313

RESUMO

In this study, we present a range of efficient highly durable electrochromic materials that demonstrate excellent redox and lifetime stability, sufficient coloration contrast ratios, and the best-in-class electron-transfer constants. The materials were formed by anchoring as little as a monolayer of predefined iron complexes on a surface-enhanced conductive solid support. The thickness of the substrate was optimized to maximize the change in optical density. We demonstrate that even a slight change in molecular sterics and electronics results in materials with sufficiently different properties. Thus, minor changes in the ligand design give access to materials with a wide range of color variations, including green, purple, and brown. Moreover, ligand architecture dictates either orthogonal or parallel alignment of corresponding metal complexes on the surface due to mono- or bis-quaternization. We demonstrate that monoquaternization of the complexes during anchoring to the surface-bound template layer results in redshifts of the photoabsorption peak. The results of in-solution bis-methylation supported by density functional theory calculations show that the second quaternization may lead to an opposite blueshift (in comparison with monomethylated analogs), depending on the ligand electronics and the environmental change. It is shown that the variations of the photoabsorption peak position for different ligands upon attachment to the surface can be related to the calculated charge distribution and excitation-induced redistribution. Overall, the work demonstrates a well-defined method of electrochromic material color tuning via manipulation of sterics and electronics of terpyridine-based ligands.

6.
RSC Adv ; 8(28): 15675-15686, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539477

RESUMO

The ability to form complex 3D architectures using nanoparticles (NPs) as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology. Here we report results in which the partial substitution of classical Turkevich citrate-capped gold NPs by a novel, heteroaromatic ligand (L) results in NPs able to form coordination-driven assemblies mediated by free or protein-bound iron ions. The morphology of these assemblies can be tuned depending on the source of iron. To prove the concept, classical citrate and novel NPs were reacted with iron-containing protein hemoglobin (Hb). To diminish the influence of possible electrostatic interactions of native Hb and gold NPs, the reaction was performed at the isoelectric point of Hb. Moreover, thiol groups of Hb were protected with p-quinone to exclude thiol-gold bond formation. As expected, citrate-capped gold NPs are well dispersed in functionalized Hb, while L-functionalized NPs form assemblies. The blue shift of the Soret band of the functionalized Hb, when reacted with novel NPs, unambiguously confirms the coordination of a NP-anchored heteroaromatic ligand with the heme moiety of Hb. Coarse-grained molecular dynamics of this system were performed to gain information about aggregation dynamics and kinetics of iron- and hemoglobin-templated assemblies of L-NPs. A multi-scale simulation approach was employed to extend this model to longer time scales. The application of this model towards novel coordination-based assemblies can become a powerful tool for the development of new nanomaterials.

7.
ACS Appl Mater Interfaces ; 9(46): 40438-40445, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29076345

RESUMO

Novel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively). These novel light-reflective EC materials demonstrate a high color difference, significant durability, and fast switching speed. The Fe-based material shows an excellent change of optical density and coloration efficiency. The results of thermogravimetric analysis suggest high thermal stability of the materials. Indeed, the EC characteristics do not change significantly after heating of Fe-L/ITO at 100 °C for 1 week, confirming the excellent stability and high EC reversibility. The proposed fabrication approach that utilizes interparticle porosity of the support and requires as low as a monolayer of EC active molecule benefits from the significant molecular economy when compared with traditional polymer-based EC devices and is significantly less time-consuming than layer-by-layer growth of coordination-based molecular assemblies.

8.
Nat Commun ; 7: 12654, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585494

RESUMO

The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol(-1)) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films.

9.
Nat Chem ; 6(5): 409-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24755592

RESUMO

Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold-carbon bond relative to that of a gold-sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs.


Assuntos
Ouro/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Compostos Heterocíclicos/síntese química , Metano/síntese química , Metano/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
J Colloid Interface Sci ; 393: 352-60, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23153676

RESUMO

Tannins and humic substances, commonly referred to as natural organic matter (NOM), constitute an important component of natural water and soil systems. These species contain numerous hydroxyl and carboxyl functional groups whose reactivity is strongly dependent on both the quantity and location of these moieties on the aromatic ring. In the present study, self-assembled monolayers (SAMs) of 4-(12-mercaptododecyl)benzene-1,2-diol (o-hydroxyphenol-terminated); 5-(12-mercaptododecyl)benzene-1,3-diol (m-hydroxyphenol-terminated); bis(11-thioundecyl) hydrogen phosphate (monoprotic phosphate); and 11-thioundecyl dihydrogen phosphate (diprotic phosphate) were prepared and characterized using X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and water contact angle measurements. The interactions between phenolic groups with phosphates were examined as a function of pH using the chemical force spectrometry (CFS) technique. The observations are discussed in the context of hydrogen bonding and electrostatic repulsion interaction between corresponding species. Adhesion force profiles of hydroxyphenol isomers interacting with monoprotic phosphate are dominated by ionic H-bonding; however the strength of o-hydroxyphenol interactions is significantly higher. The difference in location of hydroxyl groups on the interface also results in significantly different force-distance profiles for the isomeric hydroxyphenols when interacting with diprotic phosphate.


Assuntos
Alcanos/síntese química , Fenóis/química , Fosfatos/química , Compostos de Sulfidrila/síntese química , Alcanos/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Estrutura Molecular , Espectrofotometria , Espectrofotometria Infravermelho , Compostos de Sulfidrila/química , Propriedades de Superfície , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA