Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Med Chem ; 66(8): 5907-5936, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017629

RESUMO

CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
2.
BMC Cancer ; 22(1): 578, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610613

RESUMO

BACKGROUND: High-mobility group box 1 (HMGB1) is increased in breast cancer cells as the result of exposure to the secreted substances from cancer-associated fibroblasts and plays a crucial role in cancer progression and drug resistance. Its effect, however, on the expression of programmed death ligand 1 (PD-L1) in breast cancer cells has not been investigated. This study aimed to investigate the mechanism of HMGB1 through receptors for advanced glycation end products (RAGE) on cell migration/invasion and PD-L1 expression in breast cancer cells. METHODS: A 3-dimensional (3-D) migration and invasion assay and Western blotting analysis to evaluate the function and the mechanism under recombinant HMGB1 (rHMGB1) treatment with knockdown of RAGE using shRAGE and PI3K/AKT inhibitors was performed. RESULTS: The results revealed that rHMGB1 induced MDA-MB-231 cell migration and invasion. The knockdown of RAGE using shRAGE and PI3K/AKT inhibitors attenuated 3-D migration and invasion in response to rHMGB1 compared to mock cells. PD-L1 up-regulation was observed in both parental MDA-MB-231 (P) and MDA-MB-231 metastasis to bone marrow (BM) cells treated with rHMGB1, and these effects were alleviated in RAGE-knock down (KD) breast cancer cells as well as in PI3K/AKT inhibitor-treated cells. CONCLUSIONS: Collectively, these findings indicate that HMGB1-RAGE through PI3K/AKT signaling promotes not only breast cancer cell invasion but also PD-L1 expression which leads to the destruction of the effector T cells. The attenuating HMGB1-RAGE-PI3K/AKT pathway may help to attenuate breast cancer cell aggressive phenotypes.


Assuntos
Antígenos de Neoplasias , Antígeno B7-H1 , Neoplasias da Mama , Proteína HMGB1 , Proteínas Quinases Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Antígenos de Neoplasias/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais
3.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327957

RESUMO

Breast tumour kinase (Brk/PTK6) is overexpressed in up to 86% of breast cancers and is associated with poorer patient outcomes. It is considered a potential therapeutic target in breast cancer, even though the full spectrum of its kinase activity is not known. This study investigated the role of the kinase domain in promoting tumour growth and its potential in sensitising triple negative breast cancer cells to standard of care chemotherapy. Triple negative human xenograft models revealed that both kinase-inactive and wild-type Brk promoted xenograft growth. Suppression of Brk activity in cells subsequently co-treated with the chemotherapy agents doxorubicin or paclitaxel resulted in an increased cell sensitivity to these agents. In triple negative breast cancer cell lines, the inhibition of Brk kinase activity augmented the effects of doxorubicin or paclitaxel. High expression of the alternatively spliced isoform, ALT-PTK6, resulted in improved patient outcomes. Our study is the first to show a role for kinase-inactive Brk in human breast tumour xenograft growth; therefore, it is unlikely that kinase inhibition of Brk, in isolation, would halt tumour growth in vivo. Breast cancer cell responses to chemotherapy in vitro were kinase-dependent, indicating that treatment with kinase inhibitors could be a fruitful avenue for combinatorial treatment. Of particular prognostic value is the ratio of ALT-PTK6:Brk expression in predicating patient outcomes.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Xenoenxertos , Humanos , Proteínas de Neoplasias , Paclitaxel/farmacologia , Proteínas Tirosina Quinases , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
4.
J Clin Invest ; 130(11): 5875-5892, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016930

RESUMO

The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.


Assuntos
Adenosina/análogos & derivados , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/biossíntese , Neuroblastoma/tratamento farmacológico , Temozolomida/farmacologia , Adenosina/farmacologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Metabolomics ; 16(4): 50, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32285223

RESUMO

INTRODUCTION: To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148. OBJECTIVES: To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study. METHODS: HILIC LC-MS/MS methods and Biocrates AbsoluteIDQ™ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis. RESULTS: BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg). CONCLUSION: AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension.


Assuntos
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/metabolismo , Metabolômica , Óxido Nítrico Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , 2-Hidroxifenetilamina/administração & dosagem , 2-Hidroxifenetilamina/metabolismo , 2-Hidroxifenetilamina/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Glicogênio Sintase Quinase 3 beta/sangue , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxido Nítrico Sintase/metabolismo , Células PC-3 , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/administração & dosagem , Pirazóis/farmacologia
6.
Blood Adv ; 4(7): 1478-1491, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32282883

RESUMO

Internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML); it causes constitutive activation of FLT3 kinase and is associated with high relapse rates and poor survival. Small-molecule inhibition of FLT3 represents an attractive therapeutic strategy for this subtype of AML, although resistance from secondary FLT3 tyrosine kinase domain (FLT3-TKD) mutations is an emerging clinical problem. CCT241736 is an orally bioavailable, selective, and potent dual inhibitor of FLT3 and Aurora kinases. FLT3-ITD+ cells with secondary FLT3-TKD mutations have high in vitro relative resistance to the FLT3 inhibitors quizartinib and sorafenib, but not to CCT241736. The mechanism of action of CCT241736 results in significant in vivo efficacy, with inhibition of tumor growth observed in efficacy studies in FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models. The efficacy of CCT241736 was also confirmed in primary samples from AML patients, including those with quizartinib-resistant disease, which induces apoptosis through inhibition of both FLT3 and Aurora kinases. The unique combination of CCT241736 properties based on robust potency, dual selectivity, and significant in vivo activity indicate that CCT241736 is a bona fide clinical drug candidate for FLT3-ITD and TKD AML patients with resistance to current drugs.


Assuntos
Leucemia Mieloide Aguda , Compostos de Fenilureia , Aurora Quinases , Benzotiazóis , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética
7.
Mol Cancer Ther ; 18(10): 1696-1707, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31575759

RESUMO

BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel.


Assuntos
Pontos de Checagem do Ciclo Celular , Pirimidinas/farmacologia , Fuso Acromático/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Disponibilidade Biológica , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos Humanos/genética , Sinergismo Farmacológico , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/química , Fuso Acromático/efeitos dos fármacos , Triazóis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
Commun Biol ; 2: 156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098401

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood brainstem tumour, with a quarter of patients harbouring somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2. Despite being an amenable drug target, little has been done to-date to systematically evaluate the role of ACVR1 in DIPG, nor to screen currently available inhibitors in patient-derived tumour models. Here we show the dependence of DIPG cells on the mutant receptor, and the preclinical efficacy of two distinct chemotypes of ALK2 inhibitor in vitro and in vivo. We demonstrate the pyrazolo[1,5-a]pyrimidine LDN-193189 and the pyridine LDN-214117 to be orally bioavailable and well-tolerated, with good brain penetration. Treatment of immunodeprived mice bearing orthotopic xenografts of H3.3K27M, ACVR1R206H mutant HSJD-DIPG-007 cells with 25 mg/kg LDN-193189 or LDN-214117 for 28 days extended survival compared with vehicle controls. Development of ALK2 inhibitors with improved potency, selectivity and advantageous pharmacokinetic properties may play an important role in therapy for DIPG patients.


Assuntos
Receptores de Ativinas Tipo I/genética , Antineoplásicos/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/metabolismo , Administração Oral , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/mortalidade , Glioma Pontino Intrínseco Difuso/patologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos SCID , Mutação , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 62(5): 2447-2465, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30779566

RESUMO

A series of imidazo[1,2- b]pyridazin-8-amine kinase inhibitors were discovered to allosterically inhibit the endoribonuclease function of the dual kinase-endoribonuclease inositol-requiring enzyme 1α (IRE1α), a key component of the unfolded protein response in mammalian cells and a potential drug target in multiple human diseases. Inhibitor optimization gave compounds with high kinome selectivity that prevented endoplasmic reticulum stress-induced IRE1α oligomerization and phosphorylation, and inhibited endoribonuclease activity in human cells. X-ray crystallography showed the inhibitors to bind to a previously unreported and unusually disordered conformation of the IRE1α kinase domain that would be incompatible with back-to-back dimerization of the IRE1α protein and activation of the endoribonuclease function. These findings increase the repertoire of known IRE1α protein conformations and can guide the discovery of highly selective ligands for the IRE1α kinase site that allosterically inhibit the endoribonuclease.


Assuntos
Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Regulação Alostérica , Biopolímeros/metabolismo , Cristalografia por Raios X , Dimerização , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/química , Células HEK293 , Humanos , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química
10.
Br J Cancer ; 119(9): 1118-1128, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30377337

RESUMO

BACKGROUND: AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS: Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS: In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION: This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino
11.
J Med Chem ; 61(18): 8226-8240, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30199249

RESUMO

Monopolar spindle 1 (MPS1) occupies a central role in mitosis and is one of the main components of the spindle assembly checkpoint. The MPS1 kinase is an attractive cancer target, and herein, we report the discovery of the clinical candidate BOS172722. The starting point for our work was a series of pyrido[3,4- d]pyrimidine inhibitors that demonstrated excellent potency and kinase selectivity but suffered from rapid turnover in human liver microsomes (HLM). Optimizing HLM stability proved challenging since it was not possible to identify a consistent site of metabolism and lowering lipophilicity proved unsuccessful. Key to overcoming this problem was the finding that introduction of a methyl group at the 6-position of the pyrido[3,4- d]pyrimidine core significantly improved HLM stability. Met ID studies suggested that the methyl group suppressed metabolism at the distant aniline portion of the molecule, likely by blocking the preferred pharmacophore through which P450 recognized the compound. This work ultimately led to the discovery of BOS172722 as a Phase 1 clinical candidate.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ensaios Clínicos Fase I como Assunto , Feminino , Humanos , Masculino , Metilação , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual , Triazóis/farmacocinética
12.
Cancer Chemother Pharmacol ; 82(5): 911-912, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30173339

RESUMO

The corresponding author of this article has informed us of concerns about the immunoblots in Fig. 2 which were carried out in the collaborating laboratory of Professor Ann Jackman.

13.
Front Oncol ; 8: 271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083516

RESUMO

Background: Overexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value. Methods: Functional MRI and 18F-FDG PET were used to visualize and quantify imaging biomarkers associated with drug response within size-matched EGFR TKI-resistant CAL 27 (CALR) and sensitive (CALS) HNSCC xenografts in vivo, and pathological correlates sought. Results: Intrinsic susceptibility, oxygen-enhanced and dynamic contrast-enhanced MRI revealed significantly slower baseline R2∗ , lower hyperoxia-induced ΔR2∗ and volume transfer constant Ktrans in the CALR tumors which were associated with significantly lower Hoechst 33342 uptake and greater pimonidazole-adduct formation. There was no difference in oxygen-induced ΔR1 or water diffusivity between the CALR and CALS xenografts. PET revealed significantly higher relative uptake of 18F-FDG in the CALR cohort, which was associated with significantly greater Glut-1 expression. Conclusions: CALR xenografts established from HNSCC cells resistant to EGFR TKIs are more hypoxic, poorly perfused and glycolytic than sensitive CALS tumors. MRI combined with PET can be used to non-invasively assess HNSCC response/resistance to EGFR inhibition.

14.
Clin Cancer Res ; 24(10): 2395-2407, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29391353

RESUMO

Purpose: Myeloma is a plasma cell malignancy characterized by the overproduction of immunoglobulin, and is therefore susceptible to therapies targeting protein homeostasis. We hypothesized that heat shock factor 1 (HSF1) was an attractive therapeutic target for myeloma due to its direct regulation of transcriptional programs implicated in both protein homeostasis and the oncogenic phenotype. Here, we interrogate HSF1 as a therapeutic target in myeloma using bioinformatic, genetic, and pharmacologic means.Experimental Design: To assess the clinical relevance of HSF1, we analyzed publicly available patient myeloma gene expression datasets. Validation of this novel target was conducted in in vitro experiments using shRNA or inhibitors of the HSF1 pathway in human myeloma cell lines and primary cells as well as in in vivo human myeloma xenograft models.Results: Expression of HSF1 and its target genes were associated with poorer myeloma patient survival. ShRNA-mediated knockdown or pharmacologic inhibition of the HSF1 pathway with a novel chemical probe, CCT251236, or with KRIBB11, led to caspase-mediated cell death that was associated with an increase in EIF2α phosphorylation, CHOP expression and a decrease in overall protein synthesis. Importantly, both CCT251236 and KRIBB11 induced cytotoxicity in human myeloma cell lines and patient-derived primary myeloma cells with a therapeutic window over normal cells. Pharmacologic inhibition induced tumor growth inhibition and was well-tolerated in a human myeloma xenograft murine model with evidence of pharmacodynamic biomarker modulation.Conclusions: Taken together, our studies demonstrate the dependence of myeloma cells on HSF1 for survival and support the clinical evaluation of pharmacologic inhibitors of the HSF1 pathway in myeloma. Clin Cancer Res; 24(10); 2395-407. ©2018 AACRSee related commentary by Parekh, p. 2237.


Assuntos
Biomarcadores Tumorais , Sobrevivência Celular/genética , Fatores de Transcrição de Choque Térmico/genética , Mieloma Múltiplo/genética , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Gut ; 67(8): 1484-1492, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790159

RESUMO

OBJECTIVE: Regorafenib demonstrated efficacy in patients with metastatic colorectal cancer (mCRC). Lack of predictive biomarkers, potential toxicities and cost-effectiveness concerns highlight the unmet need for better patient selection. DESIGN: Patients with RAS mutant mCRC with biopsiable metastases were enrolled in this phase II trial. Dynamic contrast-enhanced (DCE) MRI was acquired pretreatment and at day 15 post-treatment. Median values of volume transfer constant (Ktrans), enhancing fraction (EF) and their product KEF (summarised median values of Ktrans× EF) were generated. Circulating tumour (ct) DNA was collected monthly until progressive disease and tested for clonal RAS mutations by digital-droplet PCR. Tumour vasculature (CD-31) was scored by immunohistochemistry on 70 sequential tissue biopsies. RESULTS: Twenty-seven patients with paired DCE-MRI scans were analysed. Median KEF decrease was 58.2%. Of the 23 patients with outcome data, >70% drop in KEF (6/23) was associated with higher disease control rate (p=0.048) measured by RECIST V. 1.1 at 2 months, improved progression-free survival (PFS) (HR 0.16 (95% CI 0.04 to 0.72), p=0.02), 4-month PFS (66.7% vs 23.5%) and overall survival (OS) (HR 0.08 (95% CI 0.01 to 0.63), p=0.02). KEF drop correlated with CD-31 reduction in sequential tissue biopsies (p=0.04). RAS mutant clones decay in ctDNA after 8 weeks of treatment was associated with better PFS (HR 0.21 (95% CI 0.06 to 0.71), p=0.01) and OS (HR 0.28 (95% CI 0.07-1.04), p=0.06). CONCLUSIONS: Combining DCE-MRI and ctDNA predicts duration of anti-angiogenic response to regorafenib and may improve patient management with potential health/economic implications.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Adulto , Idoso , Biomarcadores/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico por imagem , Feminino , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
16.
Neoplasia ; 19(9): 684-694, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780387

RESUMO

Vascular endothelial growth factor A (VEGF-A) is considered one of the most important factors in tumor angiogenesis, and consequently, a number of therapeutics have been developed to inhibit VEGF signaling. Therapeutic strategies to target brain malignancies, both primary brain tumors, particularly in pediatric patients, and metastases, are lacking, but targeting angiogenesis may be a promising approach. Multiparametric MRI was used to investigate the response of orthotopic SF188luc pediatric glioblastoma xenografts to small molecule pan-VEGFR inhibitor cediranib and the effects of both cediranib and cross-reactive human/mouse anti-VEGF-A antibody B20-4.1.1 in intracranial MDA-MB-231 LM2-4 breast cancer xenografts over 48 hours. All therapeutic regimens resulted in significant tumor growth delay. In cediranib-treated SF188luc tumors, this was associated with lower Ktrans (compound biomarker of perfusion and vascular permeability) than in vehicle-treated controls. Cediranib also induced significant reductions in both Ktrans and apparent diffusion coefficient (ADC) in MDA-MB-231 LM2-4 tumors associated with decreased histologically assessed perfusion. B20-4.1.1 treatment resulted in decreased Ktrans, but in the absence of a change in perfusion; a non-significant reduction in vascular permeability, assessed by Evans blue extravasation, was observed in treated tumors. The imaging responses of intracranial MDA-MB-231 LM2-4 tumors to VEGF/VEGFR pathway inhibitors with differing mechanisms of action are subtly different. We show that VEGF pathway blockade resulted in tumor growth retardation and inhibition of tumor vasculature in preclinical models of pediatric glioblastoma and breast cancer brain metastases, suggesting that multiparametric MRI can provide a powerful adjunct to accelerate the development of antiangiogenic therapies for use in these patient populations.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Imageamento por Ressonância Magnética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Humanos , Aumento da Imagem , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Molecular , Terapia de Alvo Molecular , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Cancer Ther ; 16(10): 2315-2323, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28637716

RESUMO

MAPK pathway activation is frequently observed in human malignancies, including melanoma, and is associated with sensitivity to MEK inhibition and changes in cellular metabolism. Using quantitative mass spectrometry-based metabolomics, we identified in preclinical models 21 plasma metabolites including amino acids, propionylcarnitine, phosphatidylcholines, and sphingomyelins that were significantly altered in two B-RAF-mutant melanoma xenografts and that were reversed following a single dose of the potent and selective MEK inhibitor RO4987655. Treatment of non-tumor-bearing animals and mice bearing the PTEN-null U87MG human glioblastoma xenograft elicited plasma changes only in amino acids and propionylcarnitine. In patients with advanced melanoma treated with RO4987655, on-treatment changes of amino acids were observed in patients with disease progression and not in responders. In contrast, changes in phosphatidylcholines and sphingomyelins were observed in responders. Furthermore, pretreatment levels of seven lipids identified in the preclinical screen were statistically significantly able to predict objective responses to RO4987655. The RO4987655 treatment-related changes were greater than baseline physiological variability in nontreated individuals. This study provides evidence of a translational exo-metabolomic plasma readout predictive of clinical efficacy together with pharmacodynamic utility following treatment with a signal transduction inhibitor. Mol Cancer Ther; 16(10); 2315-23. ©2017 AACR.


Assuntos
Benzamidas/administração & dosagem , Biomarcadores Tumorais/sangue , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/sangue , Oxazinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/sangue , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Metástase Neoplásica , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Signal ; 37: 12-30, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28535874

RESUMO

It has been previously demonstrated that the bi-directional transporter Na+/Ca2+ exchanger (NCX) working in the reverse (Ca2+-influx) - mode promotes the activation of ERK1/2 in response to the key pro-angiogenic cytokine VEGF in human endothelial cells (ECs). However, the molecular event(s) that elicit NCX reversal in VEGF-stimulated ECs remain unclear. Here we investigated whether Na+ influx via the diacylglycerol (DAG) - activated non-selective cation channel TRPC3 was functionally associated with NCX and whether its activity was required for VEGF-induced ERK1/2 activation and angiogenesis. We provide evidence that TRPC3 inhibitors and siRNA attenuated ERK1/2 phosphorylation, reduced PKCα activity and partially suppressed Ca2+ transients in response to VEGF. Additionally, TRPC3 inhibitors and siRNA significantly suppressed endothelial tubular differentiation, an in vitro indicator of angiogenesis. We also report that simulating PLCγ activation downstream of VEGF receptor 2 by application of the cell-permeable DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) was sufficient to activate ERK1/2 and enhance tubular differentiation. OAG-induced ERK1/2 activation and tubulogenesis were significantly suppressed by TRPC3 and reverse-mode NCX inhibitors and siRNA. Moreover, whilst both reverse-mode NCX and TRPC3 inhibitors attenuated OAG-induced Ca2+ transients, only TRPC3 antagonists blunted Na+ influx in response to OAG. Importantly, when Na+ was increased in ECs by inhibiting the Na+-K+-ATPase, TRPC3 activity was dispensable for OAG-induced ERK1/2 phosphorylation. Collectively, our research suggests that DAG generation downstream of VEGF receptors activatesTRPC3 causing Na+ influx with subsequent reversal of NCX, ERK1/2 activation and ultimately contributes to enhanced angiogenesis. Targeting reverse-mode NCX and its upstream initiator TRPC3 could be clinically relevant in conditions characterised by abnormal VEGF signalling.


Assuntos
Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Sódio/metabolismo
19.
Clin Breast Cancer ; 17(6): 441-452.e2, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28533055

RESUMO

INTRODUCTION: The influence of cancer-associated fibroblasts (CAFs) and high mobility group box 1 (HMGB1) has been recognized in several cancers, although their roles in breast cancer are unclear. The present study aimed to determine the levels and prognostic significance of α-smooth muscle actin-positive (ASMA+) CAFs, plus HMGB1 and receptor for advanced glycation end products (RAGE) in cancer cells. MATERIALS AND METHODS: A total of 127 breast samples, including 96 malignant and 31 benign, were examined for ASMA, HMGB1, and RAGE by immunohistochemistry. The χ2 test and Fisher's exact test were used to test the association of each protein with clinicopathologic parameters. The Kaplan-Meier method or log-rank test and Cox regression were used for survival analysis. RESULTS: ASMA+ fibroblast infiltration was significantly increased in the tumor stroma compared with that in benign breast tissue. The levels of cytoplasmic HMGB1 and RAGE were significantly greater in the breast cancer tissue than in the benign breast tissues. High ASMA expression correlated significantly with large tumor size, clinical stage III-IV, and angiolymphatic and perinodal invasion. In contrast, increased cytoplasmic HMGB1 correlated significantly with small tumor size, pT stage, early clinical stage, luminal subtype (but not triple-negative subtype), and estrogen receptor and progesterone receptor expression. The levels of ASMA (hazard ratio, 14.162; P = .010) and tumor cytoplasmic HMGB1 (hazard ratio, 0.221; P = .005) could serve as independent prognostic markers for metastatic relapse in breast cancer patients. The ASMA-high/HMGB1-low profile provided the most reliable prediction of metastatic relapse. CONCLUSION: We present for the first time, to the best of our knowledge, the potential clinical implications of the combined assessment of ASMA+ fibroblasts and cytoplasmic HMGB1 in breast cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal de Mama/patologia , Proteína HMGB1/biossíntese , Actinas/metabolismo , Adulto , Idoso , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/biossíntese , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Feminino , Proteína HMGB1/análise , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Prognóstico , Modelos de Riscos Proporcionais
20.
Br J Cancer ; 116(9): 1166-1176, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28334731

RESUMO

BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.


Assuntos
Proteínas de Ciclo Celular/genética , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Células HCT116 , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA