Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895236

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with poor outcome after stroke. Peripheral monocytes play a critical role in the secondary injury and recovery of damaged brain tissue after stroke, but the underlying mechanisms are largely unclear. To investigate transcriptome changes and molecular networks across monocyte subsets in response to T2DM and stroke, we performed single-cell RNA-sequencing (scRNAseq) from peripheral blood mononuclear cells and bulk RNA-sequencing from blood monocytes from four groups of adult mice, consisting of T2DM model db/db and normoglycemic control db/+ mice with or without ischemic stroke. Via scRNAseq we found that T2DM expands the monocyte population at the expense of lymphocytes, which was validated by flow cytometry. Among the monocytes, T2DM also disproportionally increased the inflammatory subsets with Ly6C+ and negative MHC class II expression (MO.6C+II-). Conversely, monocytes from control mice without stroke are enriched with steady-state classical monocyte subset of MO.6C+II+ but with the least percentage of MO.6C+II- subtype. Apart from enhancing inflammation and coagulation, enrichment analysis from both scRNAseq and bulk RNAseq revealed that T2DM specifically suppressed type-1 and type-2 interferon signaling pathways crucial for antigen presentation and the induction of ischemia tolerance. Preconditioning by lipopolysaccharide conferred neuroprotection against ischemic brain injury in db/+ but not in db/db mice and coincided with a lesser induction of brain Interferon-regulatory-factor-3 in the brains of the latter mice. Our results suggest that the increased diversity and altered transcriptome in the monocytes of T2DM mice underlie the worse stroke outcome by exacerbating secondary injury and potentiating stroke-induced immunosuppression. Significance Statement: The mechanisms involved in the detrimental diabetic effect on stroke are largely unclear. We show here, for the first time, that peripheral monocytes have disproportionally altered the subsets and changed transcriptome under diabetes and/or stroke conditions. Moreover, genes in the IFN-related signaling pathways are suppressed in the diabetic monocytes, which underscores the immunosuppression and impaired ischemic tolerance under the T2DM condition. Our data raise a possibility that malfunctioned monocytes may systemically and focally affect the host, leading to the poor outcome of diabetes in the setting of stroke. The results yield important clues to molecular mechanisms involved in the detrimental diabetic effect on stroke outcome.

2.
Nat Commun ; 15(1): 5483, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942804

RESUMO

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. Here we perform bulk and single-cell RNA sequencing of samples from the lower respiratory tract and blood, and assess plasma cytokine profiling to study the effects of dexamethasone on both systemic and pulmonary immune cell compartments. In blood samples, dexamethasone is associated with decreased expression of genes associated with T cell activation, including TNFSFR4 and IL21R. We also identify decreased expression of several immune pathways, including major histocompatibility complex-II signaling, selectin P ligand signaling, and T cell recruitment by intercellular adhesion molecule and integrin activation, suggesting these are potential mechanisms of the therapeutic benefit of steroids in COVID-19. We identify additional compartment- and cell- specific differences in the effect of dexamethasone that are reproducible in publicly available datasets, including steroid-resistant interferon pathway expression in the respiratory tract, which may be additional therapeutic targets. In summary, we demonstrate compartment-specific effects of dexamethasone in critically ill COVID-19 patients, providing mechanistic insights with potential therapeutic relevance. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Citocinas , Dexametasona , Pulmão , SARS-CoV-2 , Dexametasona/uso terapêutico , Dexametasona/farmacologia , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Citocinas/metabolismo , Citocinas/sangue , Estado Terminal , Masculino , Análise de Célula Única , Feminino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Idoso , Ativação Linfocitária/efeitos dos fármacos
3.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798460

RESUMO

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

4.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690733

RESUMO

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Assuntos
COVID-19 , Índice de Gravidade de Doença , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/sangue , Citocinas/sangue , Citocinas/imunologia , Estudos Longitudinais , Multiômica
6.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577607

RESUMO

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. We performed bulk and single-cell RNA sequencing of the lower respiratory tract and blood, and plasma cytokine profiling to study the effect of dexamethasone on systemic and pulmonary immune cells. We find decreased signatures of antigen presentation, T cell recruitment, and viral injury in patients treated with dexamethasone. We identify compartment- and cell- specific differences in the effect of dexamethasone in patients with severe COVID-19 that are reproducible in publicly available datasets. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.

7.
Cell Genom ; 3(1): 100229, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777184

RESUMO

Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.

8.
PLoS One ; 18(2): e0281371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787323

RESUMO

OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/metabolismo , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores , Reação em Cadeia da Polimerase em Tempo Real
9.
Sci Immunol ; 7(69): eabj1080, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245089

RESUMO

Inflammation and dysfunction of the extrahepatic biliary tree are common causes of human pathology, including gallstones and cholangiocarcinoma. Despite this, we know little about the local regulation of biliary inflammation. Tuft cells, rare sensory epithelial cells, are particularly prevalent in the mucosa of the gallbladder and extrahepatic bile ducts. Here, we show that biliary tuft cells express a core genetic tuft cell program in addition to a tissue-specific gene signature and, in contrast to small intestinal tuft cells, decreased postnatally, coincident with maturation of bile acid production. Manipulation of enterohepatic bile acid recirculation revealed that tuft cell abundance is negatively regulated by bile acids, including in a model of obstructive cholestasis in which inflammatory infiltration of the biliary tree correlated with loss of tuft cells. Unexpectedly, tuft cell-deficient mice spontaneously displayed an increased gallbladder epithelial inflammatory gene signature accompanied by neutrophil infiltration that was modulated by the microbiome. We propose that biliary tuft cells function as bile acid-sensitive negative regulators of inflammation in biliary tissues and serve to limit inflammation under homeostatic conditions.


Assuntos
Ácidos e Sais Biliares , Sistema Biliar , Animais , Células Epiteliais/fisiologia , Inflamação , Camundongos , Neutrófilos
10.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982656

RESUMO

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Assuntos
Asma , COVID-19 , Células Cultivadas , Células Epiteliais , Epitélio , Humanos , Interleucina-13/farmacologia , SARS-CoV-2
11.
Nat Commun ; 12(1): 6309, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728633

RESUMO

Lung fibrosis is increasingly detected with aging and has been associated with poor outcomes in acute lung injury or infection. However, the molecular programs driving this pro-fibrotic evolution are unclear. Here we profile distal lung samples from healthy human donors across the lifespan. Gene expression profiling by bulk RNAseq reveals both increasing cellular senescence and pro-fibrotic pathway activation with age. Quantitation of telomere length shows progressive shortening with age, which is associated with DNA damage foci and cellular senescence. Cell type deconvolution analysis of the RNAseq data indicates a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts with age. Consistent with this pro-fibrotic profile, second harmonic imaging of aged lungs demonstrates increased density of interstitial collagen as well as decreased alveolar expansion and surfactant secretion. In this work, we reveal the transcriptional and structural features of fibrosis and associated functional impairment in normal lung aging.


Assuntos
Colágeno/metabolismo , Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Encurtamento do Telômero , Adolescente , Adulto , Fatores Etários , Idoso , Senescência Celular/fisiologia , Estudos de Coortes , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
12.
J Med Chem ; 64(19): 14809-14821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606726

RESUMO

The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Próstata/patologia , Proteostase/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
13.
bioRxiv ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33655249

RESUMO

RATIONALE: Asthma is associated with chronic changes in the airway epithelium, a key target of SARS-CoV-2. Many epithelial changes are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. OBJECTIVES: We sought to discover how IL-13 and other cytokines affect expression of genes encoding SARS-CoV-2-associated host proteins in human bronchial epithelial cells (HBECs) and determine whether IL-13 stimulation alters susceptibility to SARS-CoV-2 infection. METHODS: We used bulk and single cell RNA-seq to identify cytokine-induced changes in SARS-CoV-2-associated gene expression in HBECs. We related these to gene expression changes in airway epithelium from individuals with mild-moderate asthma and chronic obstructive pulmonary disease (COPD). We analyzed effects of IL-13 on SARS-CoV-2 infection of HBECs. MEASUREMENTS AND MAIN RESULTS: Transcripts encoding 332 of 342 (97%) SARS-CoV-2-associated proteins were detected in HBECs (≥1 RPM in 50% samples). 41 (12%) of these mRNAs were regulated by IL-13 (>1.5-fold change, FDR < 0.05). Many IL-13-regulated SARS-CoV-2-associated genes were also altered in type 2 high asthma and COPD. IL-13 pretreatment reduced viral RNA recovered from SARS-CoV-2 infected cells and decreased dsRNA, a marker of viral replication, to below the limit of detection in our assay. Mucus also inhibited viral infection. CONCLUSIONS: IL-13 markedly reduces susceptibility of HBECs to SARS-CoV-2 infection through mechanisms that likely differ from those activated by type I interferons. Our findings may help explain reports of relatively low prevalence of asthma in patients diagnosed with COVID-19 and could lead to new strategies for reducing SARS-CoV-2 infection.

14.
Am J Respir Cell Mol Biol ; 64(3): 308-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33196316

RESUMO

The human airway epithelium is essential in homeostasis, and epithelial dysfunction contributes to chronic airway disease. Development of flow-cytometric methods to characterize subsets of airway epithelial cells will enable further dissection of airway epithelial biology. Leveraging single-cell RNA-sequencing data in combination with known cell type-specific markers, we developed panels of antibodies to characterize and isolate the major airway epithelial subsets (basal, ciliated, and secretory cells) from human bronchial epithelial-cell cultures. We also identified molecularly distinct subpopulations of secretory cells and demonstrated cell subset-specific expression of low-abundance transcripts and microRNAs that are challenging to analyze with current single-cell RNA-sequencing methods. These new tools will be valuable for analyzing and separating airway epithelial subsets and interrogating airway epithelial biology.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Citometria de Fluxo/métodos , Sistema Respiratório/citologia , Anticorpos/metabolismo , Biomarcadores/metabolismo , Humanos
15.
Hum Mol Genet ; 29(22): 3606-3615, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179741

RESUMO

Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in non-coding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral disks (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and chromatin immunoprecipitation-sequencing against H3 lysine 27 acetylation in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Histonas/genética , Receptores Acoplados a Proteínas G/genética , Escoliose/genética , Acetilação , Adolescente , Criança , Feminino , Estudo de Associação Genômica Ampla , Genômica/tendências , Humanos , Lisina/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , RNA-Seq , Escoliose/epidemiologia , Escoliose/patologia , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Transcriptoma/genética
16.
PLoS Genet ; 16(8): e1008927, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797036

RESUMO

The genetic control of gene expression is a core component of human physiology. For the past several years, transcriptome-wide association studies have leveraged large datasets of linked genotype and RNA sequencing information to create a powerful gene-based test of association that has been used in dozens of studies. While numerous discoveries have been made, the populations in the training data are overwhelmingly of European descent, and little is known about the generalizability of these models to other populations. Here, we test for cross-population generalizability of gene expression prediction models using a dataset of African American individuals with RNA-Seq data in whole blood. We find that the default models trained in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction in prediction accuracy when compared to European Americans. We replicate these limitations in cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic simulations of both populations and gene expression, we show that accurate cross-population generalizability of transcriptome prediction only arises when eQTL architecture is substantially shared across populations. In contrast, models with non-identical eQTLs showed patterns similar to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-ethnic utility of gene expression prediction.


Assuntos
Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Estudo de Associação Genômica Ampla/normas , Humanos , Locos de Características Quantitativas , RNA-Seq/métodos , RNA-Seq/normas , Padrões de Referência
17.
J Exp Med ; 217(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32725126

RESUMO

Pathogenic COPA variants cause a Mendelian syndrome of immune dysregulation with elevated type I interferon signaling. COPA is a subunit of coat protein complex I (COPI) that mediates Golgi to ER transport. Missense mutations of the COPA WD40 domain impair binding and sorting of proteins targeted for ER retrieval, but how this causes disease remains unknown. Given the importance of COPA in Golgi-ER transport, we speculated that type I interferon signaling in COPA syndrome involves missorting of STING. We show that a defect in COPI transport causes ligand-independent activation of STING. Furthermore, SURF4 is an adapter molecule that facilitates COPA-mediated retrieval of STING at the Golgi. Activated STING stimulates type I interferon-driven inflammation in CopaE241K/+ mice that is rescued in STING-deficient animals. Our results demonstrate that COPA maintains immune homeostasis by regulating STING transport at the Golgi. In addition, activated STING contributes to immune dysregulation in COPA syndrome and may be a new molecular target in treating the disease.


Assuntos
Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Doenças do Sistema Imunitário/genética , Proteínas de Membrana/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Complexo de Golgi/metabolismo , Células HEK293 , Homeostase/imunologia , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Transporte Proteico/genética , Transdução de Sinais/genética , Síndrome , Transfecção
18.
Pharmacogenomics ; 21(8): 509-520, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427048

RESUMO

Aim: GDF15 levels are a biomarker for metformin use. We performed the functional annotation of noncoding genome-wide association study (GWAS) SNPs for GDF15 levels and the Genotype-Tissue Expression (GTEx)-expression quantitative trait loci (eQTLs) for GDF15 expression within metformin-activated enhancers around GDF15. Materials & methods: These enhancers were identified using chromatin immunoprecipitation followed by sequencing data for active (H3K27ac) and silenced (H3K27me3) histone marks on human hepatocytes treated with metformin, Encyclopedia of DNA Elements data and cis-regulatory elements assignment tools. Results: The GWAS lead SNP rs888663, the SNP rs62122429 associated with GDF15 levels in the Outcome Reduction with Initial Glargine Intervention trial, and the GTEx-expression quantitative trait locus rs4808791 for GDF15 expression in whole blood are located in a metformin-activated enhancer upstream of GDF15 and tightly linked in Europeans and East Asians. Conclusion: Noncoding variation within a metformin-activated enhancer may increase GDF15 expression and help to predict GDF15 levels.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Metformina/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos
19.
Nat Metab ; 1(4): 475-484, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31535083

RESUMO

Genome wide association studies (GWAS) in obesity have identified a large number of noncoding loci located near genes expressed in the central nervous system. However, due to the difficulties in isolating and characterizing specific neuronal subpopulations, few obesity-associated SNPs have been functionally characterized. Leptin responsive neurons in the hypothalamus are essential in controlling energy homeostasis and body weight. Here, we combine FACS-sorting of leptin-responsive hypothalamic neuron nuclei with genomic and epigenomic approaches (RNA-seq, ChIP-seq, ATAC-seq) to generate a comprehensive map of leptin-response specific regulatory elements, several of which overlap obesity-associated GWAS variants. We demonstrate the usefulness of our leptin-response neuron regulome, by functionally characterizing a novel enhancer near Socs3, a leptin response-associated transcription factor. We envision our data to serve as a useful resource and a blueprint for functionally characterizing obesity-associated SNPs in the hypothalamus.


Assuntos
Peso Corporal/genética , Epigenômica , Genômica , Leptina/fisiologia , Animais , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Camundongos , Neurônios/fisiologia , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma
20.
Mol Biol Evol ; 36(12): 2805-2812, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424545

RESUMO

Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors.


Assuntos
Genoma , Murinae/genética , Animais , Masculino , Camundongos , Murinae/metabolismo , Filogeografia , Ratos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA