Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(6): 063520, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243585

RESUMO

A NASA-built x-ray microcalorimeter spectrometer has been installed on the MST facility at the Wisconsin Plasma Physics Laboratory and has recorded x-ray photons emitted by impurity ions of aluminum in a majority deuterium plasma. Much of the x-ray microcalorimeter development has been driven by the needs of astrophysics missions, where imaging arrays with few-eV spectral resolution are required. The goal of our project is to adapt these single-photon-counting microcalorimeters for magnetic fusion energy research and demonstrate the value of such measurements for fusion science. Microcalorimeter spectrometers combine the best characteristics of the x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and the broadband coverage of an x-ray pulse height analysis system. Fusion experiments are increasingly employing high-Z plasma-facing components and require measurement of the concentration of all impurity ion species in the plasma. This diagnostic has the capability to satisfy this need for multi-species impurity ion data and will also contribute to measurements of impurity ion temperature and flow velocity, Zeff, and electron density. Here, we introduce x-ray microcalorimeter detectors and discuss the diagnostic capability for magnetic fusion energy experiments. We describe our experimental setup and spectrometer operation approach at MST, and we present the results from an initial measurement campaign.

2.
Rev Sci Instrum ; 91(8): 083110, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872938

RESUMO

X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. This compounds the data acquisition time necessary to statistically sample the instrumental line broadening and can add systematic uncertainty if the intrinsic line shape of the source is not well known. To address these issues, we have built a simple, compact monochromatic x-ray source using channel cut crystals. A commercial x-ray tube illuminates a pair of channel cut crystals that are aligned in a dispersive configuration to select the Kα1 line of the x-ray tube anode material. The entire device, including the x-ray tube, can be easily hand-carried by one person and may be positioned manually or using a mechanical translation stage. The output monochromatic beam provides a collimated image of the anode spot with magnification of unity in the dispersion direction (typically 100 µm-200 µm for the x-ray tubes used here) and is unfocused in the cross-dispersion direction so that the source image in the detector plane appears as a line. We measured output count rates as high as 10 count/s/pixel for the Hitomi soft x-ray spectrometer, which had 819 µm square pixels. We implemented different monochromator designs for energies of 5.4 keV (one design) and 8.0 keV (two designs), which have effective theoretical FWHM energy resolution of 0.125 eV, 0.197 eV, and 0.086 eV, respectively; these are well-suited for optimal calibration measurements of state-of-the art x-ray calorimeters. We measured an upper limit for the energy resolution of our Cr Kα1 monochromator of 0.7 eV FWHM at 5.4 keV, consistent with the theoretical prediction of 0.125 eV.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31186605

RESUMO

With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).

4.
Rev Sci Instrum ; 89(10): 10F124, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399834

RESUMO

The warm electron beam ion trap (WEBIT) at Lawrence Livermore National Laboratory is being developed as a pre-launch, ground calibration source for space-borne, high-throughput, high-resolution x-ray spectrometers, such as the x-ray imaging and spectroscopy mission Resolve quantum calorimeter. Historically, calibration sources for calorimeter spectrometers have relied on characteristic line emission from x-ray tubes, fluorescing metals, and radioactive sources. The WEBIT, by contrast, relies on emission from x-ray transitions in highly charged ions, for example, hydrogen-like and helium-like ions, whose energies are well known and whose line shapes are relatively simple. The WEBIT can create astrophysically relevant ions whose x-ray emission falls in the 0.3-12 keV science bandpass of Resolve and has a portable design advantageous for a calibration source. The WEBIT will be used to help calibrate Resolve's instrumental line shape and gain scale as a function of various operational parameters during both detector subsystem level testing and instrumental level testing.

5.
J Low Temp Phys ; 193(5-6): 687-694, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31359888

RESUMO

The X-ray integral field unit (X-IFU) is a cryogenic spectrometer for the Advanced Telescope for High ENergy Astrophysics (ATHENA). ATHENA is a planned next-generation space-based X-ray observatory with capabilities that surpass the spectral resolution of prior missions. Proposed device designs contain up to 3840 transition edge sensors, each acting as an individual pixel on the detector, presenting a unique challenge for wiring superconducting leads in the focal plane assembly. In prototypes that require direct wiring, the edges of X-IFU focal plane have hosted aluminum wirebonding pads; however, indium (In) 'bumps' deposited on an interface layer such as molybdenum nitride (MoN) can instead be used as an array of superconducting interconnects. We investigated bumped MoN:In structures with different process cleans and layer thicknesses. Measurements of the resistive transitions showed variation of transition temperature T c as a function of bias and generally differed from the expected bulk T c of In (3.41 K). Observed resistance of the In bump structures at temperatures below the MoN transition (at 8.0 K) also depended on the varied parameters. For our proposed X-IFU geometry (10 µm of In mated to a 1-µm In bump), we measured a minimum T c of 3.14 K at a bias current of 3 mA and a normal resistance of 0.59 mΩ per interconnect. We also investigated the design and fabrication of superconducting niobium (Nb) microstrip atop flexible polyimide. We present a process for integrating In bumps with the flexible Nb leads to enable high-density wiring for the ATHENA X-IFU focal plane.

6.
J Low Temp Phys ; 193(3-4): 321-327, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31186584

RESUMO

We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local "sweet spots" where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt-resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28804229

RESUMO

We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

8.
Rev Sci Instrum ; 87(11): 11D503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910640

RESUMO

The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA