Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862731

RESUMO

Skeletal muscles are a highly structured tissue responsible for movement and metabolic regulation, which can be broadly subdivided into fast and slow twitch muscles with each type expressing common as well as specific sets of proteins. Congenital myopathies are a group of muscle diseases leading to a weak muscle phenotype caused by mutations in a number of genes including RYR1. Patients carrying recessive RYR1 mutations usually present from birth and are generally more severely affected, showing preferential involvement of fast twitch muscles as well as extraocular and facial muscles. In order to gain more insight into the pathophysiology of recessive RYR1-congential myopathies, we performed relative and absolute quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying p.Q1970fsX16 and p.A4329D RyR1 mutations which were identified in a child with a severe congenital myopathy. Our in-depth proteomic analysis shows that recessive RYR1 mutations not only decrease the content of RyR1 protein in muscle, but change the expression of 1130, 753, and 967 proteins EDL, soleus and extraocular muscles, respectively. Specifically, recessive RYR1 mutations affect the expression level of proteins involved in calcium signaling, extracellular matrix, metabolism and ER protein quality control. This study also reveals the stoichiometry of major proteins involved in excitation contraction coupling and identifies novel potential pharmacological targets to treat RyR1-related congenital myopathies.


Assuntos
Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Camundongos , Animais , Camundongos Transgênicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteômica , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação
2.
J Biol Chem ; 295(30): 10331-10339, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499372

RESUMO

Mutations in the ryanodine receptor 1 (RYR1) gene are associated with several human congenital myopathies, including the dominantly inherited central core disease and exercise-induced rhabdomyolysis, and the more severe recessive phenotypes, including multiminicore disease, centronuclear myopathy, and congenital fiber type disproportion. Within the latter group, those carrying a hypomorphic mutation in one allele and a missense mutation in the other are the most severely affected. Because of nonsense-mediated decay, most hypomorphic alleles are not expressed, resulting in homozygous expression of the missense mutation allele. This should result in 50% reduced expression of the ryanodine receptor in skeletal muscle, but its observed content is even lower. To study in more detail the biochemistry and pathophysiology of recessive RYR1 myopathies, here we investigated a mouse model we recently generated by analyzing the effect of bi-allelic versus mono-allelic expression of the RyR1 p.A4329D mutation. Our results revealed that the expression of two alleles carrying the same mutation or of one allele with the mutation in combination with a hypomorphic allele does not result in functionally equal outcomes and impacts skeletal muscles differently. In particular, the bi-allelic RyR1 p.A4329D mutation caused a milder phenotype than its mono-allelic expression, leading to changes in the biochemical properties and physiological function only of slow-twitch muscles and largely sparing fast-twitch muscles. In summary, bi-allelic expression of the RyR1 p.A4329D mutation phenotypically differs from mono-allelic expression of this mutation in a compound heterozygous carrier.


Assuntos
Regulação da Expressão Gênica , Fibras Musculares de Contração Lenta/metabolismo , Força Muscular , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Substituição de Aminoácidos , Animais , Masculino , Camundongos , Camundongos Mutantes , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
Hum Mol Genet ; 29(8): 1330-1339, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32242214

RESUMO

Mutations in the RYR1 gene are the most common cause of human congenital myopathies, and patients with recessive mutations are severely affected and often display ptosis and/or ophthalmoplegia. In order to gain insight into the mechanism leading to extraocular muscle (EOM) involvement, we investigated the biochemical, structural and physiological properties of eye muscles from mouse models we created knocked-in for Ryr1 mutations. Ex vivo force production in EOMs from compound heterozygous RyR1p.Q1970fsX16+p.A4329D mutant mice was significantly reduced compared with that observed in wild-type, single heterozygous mutant carriers or homozygous RyR1p.A4329D mice. The decrease in muscle force was also accompanied by approximately a 40% reduction in RyR1 protein content, a decrease in electrically evoked calcium transients, disorganization of the muscle ultrastructure and a decrease in the number of calcium release units. Unexpectedly, the superfast and ocular-muscle-specific myosin heavy chain-EO isoform was almost undetectable in RyR1p.Q1970fsX16+p.A4329D mutant mice. The results of this study show for the first time that the EOM phenotype caused by the RyR1p.Q1970fsX16+p.A4329D compound heterozygous Ryr1 mutations is complex and due to a combination of modifications including a direct effect on the macromolecular complex involved in calcium release and indirect effects on the expression of myosin heavy chain isoforms.


Assuntos
Debilidade Muscular/genética , Cadeias Pesadas de Miosina/genética , Miotonia Congênita/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Modelos Animais de Doenças , Heterozigoto , Humanos , Camundongos , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Miotonia Congênita/patologia , Músculos Oculomotores/metabolismo , Músculos Oculomotores/patologia , Fenótipo
4.
J Gen Physiol ; 151(7): 929-943, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085573

RESUMO

Calcium is an ubiquitous second messenger mediating numerous physiological processes, including muscle contraction and neuronal excitability. Ca2+ is stored in the ER/SR and is released into the cytoplasm via the opening of intracellular inositol trisphosphate receptor and ryanodine receptor calcium channels. Whereas in skeletal muscle, isoform 1 of the RYR is the main channel mediating calcium release from the SR leading to muscle contraction, the function of ubiquitously expressed ryanodine receptor 3 (RYR3) is far from clear; it is not known whether RYR3 plays a role in excitation-contraction coupling. We recently reported that human extraocular muscles express high levels of RYR3, suggesting that such muscles may be useful to study the function of this isoform of the Ca2+ channel. In the present investigation, we characterize the visual function of ryr3-/- mice. We observe that ablation of RYR3 affects both mechanical properties and calcium homeostasis in extraocular muscles. These changes significantly impact vision. Our results reveal for the first time an important role for RYR3 in extraocular muscle function.


Assuntos
Músculos Oculomotores/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Masculino , Camundongos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculos Oculomotores/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Visão Ocular , Acuidade Visual
5.
Hum Mol Genet ; 28(18): 2987-2999, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31044239

RESUMO

Recessive ryanodine receptor 1 (RYR1) mutations cause congenital myopathies including multiminicore disease (MmD), congenital fiber-type disproportion and centronuclear myopathy. We created a mouse model knocked-in for the Q1970fsX16+A4329D RYR1 mutations, which are isogenic with those identified in a severely affected child with MmD. During the first 20 weeks after birth the body weight and the spontaneous running distance of the mutant mice were 20% and 50% lower compared to wild-type littermates. Skeletal muscles from mutant mice contained 'cores' characterized by severe myofibrillar disorganization associated with misplacement of mitochondria. Furthermore, their muscles developed less force and had smaller electrically evoked calcium transients. Mutant RyR1 channels incorporated into lipid bilayers were less sensitive to calcium and caffeine, but no change in single-channel conductance was observed. Our results demonstrate that the phenotype of the RyR1Q1970fsX16+A4329D compound heterozygous mice recapitulates the clinical picture of multiminicore patients and provide evidence of the molecular mechanisms responsible for skeletal muscle defects.


Assuntos
Cálcio/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Mutação , Miopatia da Parte Central/etiologia , Miopatia da Parte Central/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alelos , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Miopatia da Parte Central/fisiopatologia , Fenótipo
6.
Hum Mol Genet ; 28(11): 1872-1884, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689883

RESUMO

Here we characterized a mouse model knocked-in for a frameshift mutation in RYR1 exon 36 (p.Gln1970fsX16) that is isogenic to that identified in one parent of a severely affected patient with recessively inherited multiminicore disease. This individual carrying the RYR1 frameshifting mutation complained of mild muscle weakness and fatigability. Analysis of the RyR1 protein content in a muscle biopsy from this individual showed a content of only 20% of that present in a control individual. The biochemical and physiological characteristics of skeletal muscles from RyR1Q1970fsX16 heterozygous mice recapitulates that of the heterozygous parent. RyR1 protein content in the muscles of mutant mice reached 38% and 58% of that present in total muscle homogenates of fast and slow muscles from wild-type (WT) littermates. The decrease of RyR1 protein content in total homogenates is not accompanied by a decrease of Cav1.1 content, whereby the Cav1.1/RyR1 stoichiometry ratio in skeletal muscles from RyR1Q1970fsX16 heterozygous mice is lower compared to that from WT mice. Electron microscopy (EM) revealed a 36% reduction in the number/area of calcium release units accompanied by a 2.5-fold increase of dyads (triads that have lost one junctional sarcoplasmic reticulum element); both results suggest a reduction of the RyR1 arrays. Compared to WT, muscle strength and depolarization-induced calcium transients in RyR1Q1970fsX16 heterozygous mice muscles were decreased by 20% and 15%, respectively. The RyR1Q1970fsX16 mouse model provides mechanistic insight concerning the phenotype of the parent carrying the RYR1 ex36 mutation and suggests that in skeletal muscle fibres there is a functional reserve of RyR1.


Assuntos
Canais de Cálcio Tipo L/genética , Debilidade Muscular/genética , Miopatias Congênitas Estruturais/genética , Oftalmoplegia/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Adulto , Alelos , Animais , Modelos Animais de Doenças , Mutação da Fase de Leitura/genética , Heterozigoto , Humanos , Camundongos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Debilidade Muscular/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Oftalmoplegia/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/ultraestrutura
8.
J Am Heart Assoc ; 5(6)2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27353610

RESUMO

BACKGROUND: The postnatal development of myofibrillar mechanics, a major determinant of heart function, is unknown in pediatric patients with tetralogy of Fallot and related structural heart defects. We therefore determined the mechanical properties of myofibrils isolated from right ventricular tissue samples from such patients in relation to the developmental changes of the isoforms expression pattern of key sarcomere proteins involved in the contractile process. METHODS AND RESULTS: Tissue samples from the infundibulum obtained during surgery from 25 patients (age range 15 days to 11 years, median 7 months) were split into half for mechanical investigations and expression analysis of titin, myosin heavy and light chain 1, troponin-T, and troponin-I. Of these proteins, fetal isoforms of only myosin light chain 1 (ALC-1) and troponin-I (ssTnI) were highly expressed in neonates, amounting to, respectively, 40% and 80%, while the other proteins had switched to the adult isoforms before or around birth. ALC-1 and ssTnI expression subsequently declined monoexponentially with a halftime of 4.3 and 5.8 months, respectively. Coincident with the expression of ssTnI, Ca(2+) sensitivity of contraction was high in neonates and subsequently declined in parallel with the decline in ssTnI expression. Passive tension positively correlated with Ca(2+) sensitivity but not with titin expression. Contraction kinetics, maximal Ca(2+)-activated force, and the fast phase of the biphasic relaxation positively correlated with the expression of ALC-1. CONCLUSIONS: The developmental changes in myofibrillar biomechanics can be ascribed to fetal-to-adult isoform transition of key sarcomeric proteins, which evolves regardless of the specific congenital cardiac malformations in our pediatric patients.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Miofibrilas/fisiologia , Fenômenos Biomecânicos/fisiologia , Criança , Pré-Escolar , Conectina/metabolismo , Coração/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Proteínas Musculares/fisiologia , Contração Miocárdica/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Sarcômeros/fisiologia , Troponina I/metabolismo , Troponina T/metabolismo
9.
J Biol Chem ; 291(28): 14555-65, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189940

RESUMO

We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La(3+)- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca(2+) concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca(2+) concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Calsequestrina/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Camundongos , Contração Muscular , Músculo Esquelético/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA