Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(4): 793-802, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36727452

RESUMO

High blood pressure is the primary risk factor for heart disease, the leading cause of death globally. Despite this, current methods to replicate physiological pressures in vitro remain limited in sophistication and throughput. Single-chamber exposure systems allow for only one pressure condition to be studied at a time and the application of dynamic pressure waveforms is currently limited to simple sine, triangular, or square waves. Here, we introduce a high-throughput hydrostatic pressure exposure system for 96-well plates. The platform can deliver a fully-customizable pressure waveform to each column of the plate, for a total of 12 simultaneous conditions. Using clinical waveform data, we are able to replicate real patients' blood pressures as well as other medically-relevant pressures within the body and have assembled a small patient-derived waveform library of some key physiological locations. As a proof of concept, human umbilical vein endothelial cells (HUVECs) survived and proliferated for 3 days under a wide range of static and dynamic physiologic pressures ranging from 10 mm Hg to 400 mm Hg. Interestingly, pathologic and supraphysiologic pressure exposures did not inhibit cell proliferation. By integrating with, rather than replacing, ubiquitous lab cultureware it is our hope that this device will facilitate the incorporation of hydrostatic pressure into standard cell culture practice.


Assuntos
Técnicas de Cultura de Células , Impressão Tridimensional , Humanos , Pressão Hidrostática , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células
2.
PLoS One ; 18(1): e0279102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649249

RESUMO

Hydrodynamic focusing capable of readily producing and controlling laminar flow facilitates drug treatment of cells in existing microfluidic culture devices. However, to expand applications of such devices to multiparameter drug testing, critical limitations in current hydrodynamic focusing microfluidics must be addressed. Here we describe hydrodynamic focusing and shifting as an advanced microfluidics tool for spatially selective drug delivery and integrative cell-based drug testing. We designed and fabricated a co-flow focusing, three-channel microfluidic device with a wide cell culture chamber. By controlling inlet flow rates of sample and two side solutions, we could generate hydrodynamic focusing and shifting that mediated precise regulation of the path and width of reagent and drug stream in the microfluidic device. We successfully validated a hydrodynamic focusing and shifting approach for spatially selective delivery of DiI, a lipophilic fluorophore, and doxorubicin, a chemotherapeutic agent, to tumor cells in our device. Moreover, subsequent flowing of a trypsin EDTA solution over the cells that were exposed to doxorubicin flow allowed us to selectively collect the treated cells. Our approach enabled downstream high-resolution microscopy of the cell suspension to confirm the nuclear delivery of doxorubicin into the tumor cells. In the device, we could also evaluate in situ the cytotoxic effect of doxorubicin to the tumor cells that were selectively treated by hydrodynamic flow focusing and shifting. These results show that hydrodynamic focusing and shifting enable a fast and robust approach to spatially treat and then collect cells in an optimized microfluidic device, offering an integrative assay tool for efficient drug screening and discovery.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Corantes Fluorescentes , Sistemas de Liberação de Medicamentos , Detecção do Abuso de Substâncias
3.
Mol Microbiol ; 116(2): 381-396, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754381

RESUMO

The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.


Assuntos
Transporte Biológico Ativo/fisiologia , Competência de Transformação por DNA/fisiologia , DNA Bacteriano/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/metabolismo , Transformação Bacteriana/genética , Transformação Bacteriana/fisiologia
4.
Anal Chem ; 93(4): 2570-2577, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461290

RESUMO

Oxygen concentration varies tremendously within the body and has proven to be a critical variable in cell differentiation, proliferation, and drug metabolism among many other physiological processes. Currently, researchers study the gas's role in biology using low-throughput gas control incubators or hypoxia chambers in which all cells in a vessel are exposed to a single oxygen concentration. Here, we introduce a device that can simultaneously deliver 12 unique oxygen concentrations to cells in a 96-well plate and seamlessly integrate into biomedical research workflows. The device inserts into 96-well plates and delivers gas to the headspace, thus avoiding undesirable contact with media. This simple approach isolates each well using gas-tight pressure-resistant gaskets effectively creating 96 "mini-incubators". Each of the 12 columns of the plate is supplied by a distinct oxygen concentration from a gas-mixing gradient generator supplied by two feed gases. The wells within each column are then supplied by an equal flow-splitting distribution network. Using equal feed flow rates, concentrations ranging from 0.6 to 20.5% were generated within a single plate. A549 lung carcinoma cells were then used to show that O2 levels below 9% caused a stepwise increase in cell death for cells treated with the hypoxia-activated anticancer drug tirapirizamine (TPZ). Additionally, the 96-well plate was further leveraged to simultaneously test multiple TPZ concentrations over an oxygen gradient and generate a three-dimensional (3D) dose-response landscape. The results presented here show how microfluidic technologies can be integrated into, rather than replace, ubiquitous biomedical labware allowing for increased throughput oxygen studies.


Assuntos
Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Oxigênio , Impressão Tridimensional/instrumentação , Células A549 , Técnicas de Cultura de Células/instrumentação , Humanos
5.
Lab Chip ; 19(4): 682-692, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30657515

RESUMO

Streptococcus pneumoniae (pneumococcus), a deadly bacterial human pathogen, uses genetic transformation to gain antibiotic resistance. Genetic transformation begins when a pneumococcal strain in a transient specialized physiological state called competence, attacks and lyses another strain, releasing DNA, taking up fragments of the liberated DNA, and integrating divergent genes into its genome. While many steps of the process are known and generally understood, the precise mechanism of this natural genetic transformation is not fully understood and the current standard strategies to study it have limitations in specifically controlling and observing the process in detail. To overcome these limitations, we have developed a droplet microfluidic system for isolating individual episodes of bacterial transformation between two confined cells of pneumococcus. By encapsulating the cells in a 10 µm diameter aqueous droplet, we provide an improved experimental model of genetic transformation, as both participating cells can be identified, and the released DNA is spatially restricted near the attacking strain. Specifically, the bacterial cells, one rifampicin (R) resistant, the other novobiocin (N) and spectinomycin (S) resistant were encapsulated in droplets carried by the fluorinated oil FC-40 with 5% surfactant and allowed to carry out competence-specific attack and DNA uptake (and consequently gain antibiotic resistances) within the droplets. The droplets were then broken, and recombinants were recovered by selective plating with antibiotics. The new droplet system encapsulated 2 or more cells in a droplet with a probability up to 71%, supporting gene transfer rates comparable to standard mixtures of unconfined cells. Thus, confinement in droplets allows characterization of natural genetic transformation during a strictly defined interaction between two confined cells.


Assuntos
Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/genética , Transformação Bacteriana , Antibacterianos/farmacologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas/instrumentação , Novobiocina/farmacologia , Tamanho da Partícula , Rifampina/farmacologia , Espectinomicina/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Propriedades de Superfície , Transformação Bacteriana/efeitos dos fármacos , Transformação Bacteriana/genética
6.
Integr Biol (Camb) ; 11(12): 415-424, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31990351

RESUMO

Gene exchange via genetic transformation makes major contributions to antibiotic resistance of the human pathogen, Streptococcus pneumoniae (pneumococcus). The transfers begin when a pneumococcal cell, in a transient specialized physiological state called competence, attacks and lyses another cell, takes up fragments of the liberated DNA, and integrates divergent genes into its genome. Recently, it has been demonstrated that the pneumococcal cells can be enclosed in femtoliter-scale droplets for study of the transformation mechanism, offering the ability to characterize individual cell-cell interactions and overcome the limitations of current methods involving bulk mixed cultures. To determine the relevance and reliability of this new method for study of bacterial genetic transformation, we compared recombination events occurring in 44 recombinants recovered after competence-mediated gene exchange between pairs of cells confined in femtoliter-scale droplets vs. those occurring in exchanges in parallel bulk culture mixtures. The pattern of recombination events in both contexts exhibited the hallmarks of the macro-recombination exchanges previously observed within the more complex natural contexts of biofilms and long-term evolution in the human host.


Assuntos
Técnicas de Transferência de Genes , Microfluídica , Streptococcus pneumoniae , Transformação Bacteriana , Biofilmes , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Genômica , Sequenciamento Completo do Genoma
7.
Micromachines (Basel) ; 9(4)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30424124

RESUMO

Scientific communities are drawn to the open source model as an increasingly utilitarian method to produce and share work. Initially used as a means to develop freely-available software, open source projects have been applied to hardware including scientific tools. Increasing convenience of 3D printing has fueled the proliferation of open labware projects aiming to develop and share designs for scientific tools that can be produced in-house as inexpensive alternatives to commercial products. We present our design of a micropipette that is assembled from 3D-printable parts and some hardware that works by actuating a disposable syringe to a user-adjustable limit. Graduations on the syringe are used to accurately adjust the set point to the desired volume. Our open design printed micropipette is assessed in comparison with a commercial pipette and meets the ISO 8655 standards.

8.
RSC Adv ; 8(8): 4078-4083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294423

RESUMO

Hydrogen sulfide (H2S) plays an important role as an intercellular and intracellular signaling molecule, yet its targets are not well understood. As a molecule it easily evaporates and it is hard to acquire stable concentration for in vitro studies, constituting a major problem for the field to identify its downstream targets and function. Here we develop a microfluidic system that can provide consistent and controllable H2S levels in contrast to the current method of delivering large bolus doses to cells. The system relies on the permeability of H2S gas through a polydimethylsiloxane thin membrane. A hydrogen sulfide donor, sodium hydrosulfide, is perfused in the microchannels below the gas permeable membrane and gaseous H2S diffuses across the membrane, providing a stable concentration for up to 5 hours. Using electrochemical sensors within 3 ppm range, we found that H2S concentration was dependent on two parameters, the concentration of H2S donor, sodium hydrosulfide and the flow rate of the solution in the microchannels. Additionally, different H2S concentration profiles can be obtained by alternating the flow rate, providing an easy means to control the H2S concentration. Our approach constitutes a unique method for H2S delivery for in vitro and ex vivo studies and is ideally suited to identify novel biological processes and cellular mechanisms regulated by H2S.

9.
Arterioscler Thromb Vasc Biol ; 38(1): 64-75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025707

RESUMO

OBJECTIVE: Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process. APPROACH AND RESULTS: Endothelial elastic modulus of intact mouse aortas ex vivo and of human aortic endothelial cells exposed to laminar flow or DF was measured using atomic force microscopy. Endothelial monolayer of the aortic arch is found to be significantly stiffer than the descending aorta (4.2+1.1 versus 2.5+0.2 kPa for aortic arch versus descending aorta) in mice maintained on low-fat diet. This effect is significantly exacerbated by short-term high-fat diet (8.7+2.5 versus 4.5+1.2 kPa for aortic arch versus descending aorta). Exposure of human aortic endothelial cells to DF in vitro resulted in 50% increase in oxLDL uptake and significant endothelial stiffening in the presence but not in the absence of oxLDL. DF also increased the expression of oxLDL receptor CD36 (cluster of differentiation 36), whereas downregulation of CD36 abrogated DF-induced endothelial oxLDL uptake and stiffening. Furthermore, genetic deficiency of CD36 abrogated endothelial stiffening in the aortic arch in vivo in mice fed either low-fat diet or high-fat diet. We also show that the loss of endothelial stiffening in CD36 knockout aortas is not mediated by the loss of CD36 in circulating cells. CONCLUSIONS: DF facilitates endothelial CD36-dependent uptake of oxidized lipids resulting in local increase of endothelial stiffness in proatherogenic areas of the aorta.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Dislipidemias/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Rigidez Vascular , Animais , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Transporte Biológico , Antígenos CD36/deficiência , Antígenos CD36/genética , Células Cultivadas , Modelos Animais de Doenças , Dislipidemias/patologia , Dislipidemias/fisiopatologia , Módulo de Elasticidade , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Camundongos Knockout , Fluxo Sanguíneo Regional , Transdução de Sinais , Regulação para Cima
10.
PLoS One ; 12(9): e0185267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934338

RESUMO

Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.


Assuntos
Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Oxigênio/metabolismo , Animais , Movimento Celular , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Permeabilidade
11.
Integr Biol (Camb) ; 9(9): 742-750, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28840922

RESUMO

Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 µm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled. We studied the hypoxic activation of the transcription factors HIF-1α and HIF-2α in human endothelial cells within a spatial linear gradient of oxygen. Quantification of the nuclear to cytosolic ratio of HIF immunofluorescent staining demonstrated that the threshold for HIF-1α activation was below 2.5% O2 while HIF-2α was activated throughout the entire linear gradient. We show for the first time HIF-2α is subject to hyproxya, hypoxia by proxy, wherein hypoxic cells activate HIF in close-proximity normoxic cells. These results underscore the differences between HIF-1α and HIF-2α regulation and suggest that a microfluidic oxygen gradient is a novel tool for identifying distinct hypoxic signaling activation and interactions between differentially oxygenated cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Citometria de Varredura a Laser , Transdução de Sinais
12.
Biomed Microdevices ; 19(3): 58, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28646280

RESUMO

Bubbles are an intrinsic problem in microfluidic devices and they can appear during the initial filling of the device or during operation. This report presents a generalizable technique to extract bubbles from microfluidic networks using an adjacent microfluidic negative pressure network over the entire microfluidic channel network design. We implement this technique by superimposing a network of parallel microchannels with a vacuum microfluidic channel and characterize the bubble extraction rates as a function of negative pressure applied. In addition, we generate negative pressure via a converging-diverging (CD) nozzle, which only requires inlet gas pressure to operate. Air bubbles generated during the initial liquid filling of the microfluidic network are removed within seconds and their volume extraction rate is calculated. This miniaturized vacuum source can achieve a vacuum pressure of 7.23 psi which corresponds to a bubble extraction rate of 9.84 pL/s, in the microfluidic channels we characterized. Finally, as proof of concept it is shown that the bubble removal system enables bubble removal on difficult to fill microfluidic channels such as circular or triangular shaped channels. This method can be easily integrated into many microfluidic experimental protocols.


Assuntos
Dispositivos Lab-On-A-Chip , Vácuo
13.
Biomed Microdevices ; 18(4): 74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27469475

RESUMO

Microfluidic devices with integrated pneumatic logic enable automated fluid handling without requiring external control instruments. These chips offer the additional advantage that they may be powered by vacuum and do not require an electricity source. This work describes a microfluidic converging-diverging (CD) nozzle optimized to generate vacuum at low input pressures, making it suitable for microfluidic applications including powering integrated pneumatic logic. It was found that efficient vacuum pressure was generated for high aspect ratios of the CD nozzle constriction (or throat) width to height and diverging angle of 3.6(o). In specific, for an inlet pressure of 42.2 psia (290.8 kPa) and a volumetric flow rate of approximately 1700 sccm, a vacuum pressure of 8.03 psia (55.3 kPa) was generated. To demonstrate the capabilities of our converging - diverging nozzle device, we connected it to a vacuum powered peristaltic pump driven by integrated pneumatic logic and obtained tunable flow rates from 0 to 130 µL/min. Finally, we demonstrate a proof of concept system for use where electricity and vacuum pressure are not readily available by powering a CD nozzle with a bicycle tire pump and pressure regulator. This system is able to produce a stable vacuum sufficient to drive pneumatic logic, and could be applied to power automated microfluidics in limited resource settings.


Assuntos
Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Pressão , Microfluídica , Microtecnologia , Vácuo
14.
Lab Chip ; 16(8): 1466-72, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26999734

RESUMO

In this study, we present a microfluidic array for high-resolution imaging of individual pancreatic islets. The device is based on hydrodynamic trapping principle and enables real-time analysis of islet cellular responses to insulin secretagogues. This device has significant advantages over our previously published perifusion chamber device including significantly increased analytical power and assay sensitivity, as well as improved spatiotemporal resolution. The islet array, with live-cell multiparametric imaging integration, provides a better tool to understand the physiological and pathophysiological changes of pancreatic islets through the analysis of single islet responses. This platform demonstrates the feasibility of array-based islet cellular analysis and opens up a new modality to conduct informative and quantitive evaluation of islets and cell-based screening for new diabetes treatments.


Assuntos
Ilhotas Pancreáticas/citologia , Dispositivos Lab-On-A-Chip , Imagem Molecular/instrumentação , Animais , Sobrevivência Celular , Estudos de Viabilidade , Humanos , Camundongos
15.
PLoS One ; 10(9): e0137631, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360882

RESUMO

3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.


Assuntos
Oxigênio/análise , Impressão Tridimensional/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Membranas Artificiais , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular
16.
Lab Chip ; 14(24): 4688-95, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25315003

RESUMO

An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.


Assuntos
Comunicação Celular , Células Endoteliais , Técnicas Analíticas Microfluídicas , Oxigênio/metabolismo , Hipóxia Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
17.
Lab Chip ; 14(22): 4305-18, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251498

RESUMO

Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in channels to generate oxygen gradients in a device, and electrolytic reactions to produce oxygen directly on chip.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/análise , Oxigênio/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação
18.
J Vis Exp ; (81): e50616, 2013 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-24299958

RESUMO

Simultaneous oxygenation and monitoring of glucose stimulus-secretion coupling factors in a single technique is critical for modeling pathophysiological states of islet hypoxia, especially in transplant environments. Standard hypoxic chamber techniques cannot modulate both stimulations at the same time nor provide real-time monitoring of glucose stimulus-secretion coupling factors. To address these difficulties, we applied a multilayered microfluidic technique to integrate both aqueous and gas phase modulations via a diffusion membrane. This creates a stimulation sandwich around the microscaled islets within the transparent polydimethylsiloxane (PDMS) device, enabling monitoring of the aforementioned coupling factors via fluorescence microscopy. Additionally, the gas input is controlled by a pair of microdispensers, providing quantitative, sub-minute modulations of oxygen between 0-21%. This intermittent hypoxia is applied to investigate a new phenomenon of islet preconditioning. Moreover, armed with multimodal microscopy, we were able to look at detailed calcium and KATP channel dynamics during these hypoxic events. We envision microfluidic hypoxia, especially this simultaneous dual phase technique, as a valuable tool in studying islets as well as many ex vivo tissues.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/administração & dosagem , Animais , Hipóxia Celular/fisiologia , Glucose/administração & dosagem , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
19.
Anal Chem ; 85(23): 11240-9, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24083835

RESUMO

In this article, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at the single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity. Our approach demonstrates an improvement over conventional hypoxia chambers that is able to rapidly equilibrate to true hypoxia levels through the integration of dynamic oxygenation. This work demonstrates the feasibility of array-based cellular analysis and opens up new modality to conduct informative analysis and cell-based screening for microencapsulated pancreatic islets.


Assuntos
Sistemas Computacionais , Ilhotas Pancreáticas/fisiologia , Microfluídica/métodos , Consumo de Oxigênio/fisiologia , Animais , Hipóxia Celular/fisiologia , Composição de Medicamentos/métodos , Humanos , Ratos
20.
J Neurosci Methods ; 216(2): 110-7, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608309

RESUMO

A microfluidic oxygenator is used to deliver constant oxygen to rodent brain slices, enabling the loading of the cell-permeant calcium indicator Fura-2/AM into cells of adult brain slices. When compared to traditional methods, our microfluidic oxygenator improves loading efficiency, measured by the number of loaded cells per unit area, for all tested age groups. Loading in slices from 1-year-old mice was achieved, which has not been possible with current bulk loading methods. This technique significantly expands the age range for which calcium studies are possible without cellular injection. This technique will facilitate opportunities for the study of calcium signaling of aging and long term stress related diseases. Moreover, it should be applicable to other membrane-permeant physiological indicator varieties.


Assuntos
Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Corantes Fluorescentes/administração & dosagem , Fura-2/análogos & derivados , Microfluídica/instrumentação , Microfluídica/métodos , Animais , Feminino , Fura-2/administração & dosagem , Masculino , Camundongos , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA