Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1381051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659985

RESUMO

Finding strategies for decolonizing gut carriers of multidrug-resistant Escherichia coli (MDR-Ec) is a public-health priority. In this context, novel approaches should be validated in preclinical in vivo gut colonization models before being translated to humans. However, the use of mice presents limitations. Here, we used for the first time Zophobas morio larvae to design a new model of intestinal colonization (28-days duration, T28). Three hyperepidemic MDR-Ec producing extended-spectrum ß-lactamases (ESBLs) or carbapenemases were administered via contaminated food to larvae for the first 7 days (T7): Ec-4901.28 (ST131, CTX-M-15), Ec-042 (ST410, OXA-181) and Ec-050 (ST167, NDM-5). Growth curve analyses showed that larvae became rapidly colonized with all strains (T7, ~106-7 CFU/mL), but bacterial load remained high after the removal of contaminated food only in Ec-4901.28 and Ec-042 (T28, ~103-4 CFU/mL). Moreover, larvae receiving a force-feeding treatment with INTESTI bacteriophage cocktail (on T7 and T10 via gauge needle) were decolonized by Ec-4901.28 (INTESTI-susceptible); however, Ec-042 and Ec-050 (INTESTI-resistant) did not. Initial microbiota (before administering contaminated food) was very rich of bacterial genera (e.g., Lactococcus, Enterococcus, Spiroplasma), but patterns were heterogeneous (Shannon diversity index: range 1.1-2.7) and diverse to each other (Bray-Curtis dissimilarity index ≥30%). However, when larvae were challenged with the MDR-Ec with or without administering bacteriophages the microbiota showed a non-significant reduction of the diversity during the 28-day experiments. In conclusion, the Z. morio larvae model promises to be a feasible and high-throughput approach to study novel gut decolonization strategies for MDR-Ec reducing the number of subsequent confirmatory mammalian experiments.

2.
Microbiol Resour Announc ; 13(6): e0002324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682776

RESUMO

We present the complete genome sequence of Pseudomonas canadensis. The strain (Pcan-CK-23) was isolated from Zophobas morio (superworm) larvae. The genome consisted of a 6,424,469 bp chromosome with a GC content of 60.3% and 5,973 genes. Pcan-CK-23 can be used as a reference genome for further studies with P. canadensis.

3.
J Glob Antimicrob Resist ; 36: 65-69, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128729

RESUMO

OBJECTIVES: OCH class C ß-lactamases have been reported in several species belonging to the Brucella genus that were formerly known as Ochrobactrum. Moreover, only one complete genome of Brucella pseudintermedia has been published. In this work, we describe the genome of a B. pseudintermedia strain possessing a new blaOCH gene that was isolated from Zophobas morio larvae. METHODS: Hybrid whole-genome sequencing analysis (Illumina and Nanopore) was used to identify and characterise the strain (Ops-OCH-23). Phylogenetic analyses based on the 16S rRNA gene sequence and a core-genome alignment were performed to study the relationships among Ops-OCH-23 and deposited genomes. Moreover, all deposited blaOCH genes were compared to the one found in Ops-OCH-23. RESULTS: Ops-OCH-23 showed a susceptibility profile consistent with the production of AmpC ß-lactamase(s). Its genome consisted of two chromosomes, of which one carried the blaOCH gene. Such gene encoded a new class C OCH ß-lactamase among the fifteen so far reported. Two plasmids (120-Kb and 59-Kb) without any associated antimicrobial resistance genes were also found. Analysis of 16S rRNA revealed that Ops-OCH-23 shared 100% homology with four deposited B. pseudintermedia strains. Moreover, the core-genome analysis indicated that the closest match (279 ΔSNVs) to Ops-OCH-23 was strain CTOTU49018 isolated from an urban environment in Germany in 2013. CONCLUSION: We described the second complete genome of a B. pseudintermedia that also encoded a new OCH ß-lactamase variant. Overall, this report expands our knowledge regarding this rarely isolated Brucella species that have been reported so far only a few times in human sources.


Assuntos
Brucella , Ochrobactrum , Animais , Humanos , Larva , Filogenia , RNA Ribossômico 16S/genética , beta-Lactamases/genética , Ochrobactrum/genética , Brucella/genética
4.
Eur J Clin Microbiol Infect Dis ; 42(3): 229-254, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680641

RESUMO

The clinical impact of infections due to extended-spectrum ß-lactamase (ESBL)- and/or carbapenemase-producing Enterobacterales (Ent) has reached dramatic levels worldwide. Infections due to these multidrug-resistant (MDR) pathogens-especially Escherichia coli and Klebsiella pneumoniae-may originate from a prior asymptomatic intestinal colonization that could also favor transmission to other subjects. It is therefore desirable that gut carriers are rapidly identified to try preventing both the occurrence of serious endogenous infections and potential transmission. Together with the infection prevention and control countermeasures, any strategy capable of effectively eradicating the MDR-Ent from the intestinal tract would be desirable. In this narrative review, we present a summary of the different aspects linked to the intestinal colonization due to MDR-Ent. In particular, culture- and molecular-based screening techniques to identify carriers, data on prevalence and risk factors in different populations, clinical impact, length of colonization, and contribution to transmission in various settings will be overviewed. We will also discuss the standard strategies (selective digestive decontamination, fecal microbiota transplant) and those still in development (bacteriophages, probiotics, microcins, and CRISPR-Cas-based) that might be used to decolonize MDR-Ent carriers.


Assuntos
Farmacorresistência Bacteriana Múltipla , Gammaproteobacteria , Humanos , beta-Lactamases/genética , Klebsiella pneumoniae , Escherichia coli , Transplante de Microbiota Fecal , Fatores de Risco , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Microbiol Resour Announc ; 12(1): e0117622, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36541773

RESUMO

Here, we present the complete genome sequence of Entomomonas sp. E2T0, a strain isolated from larvae of the darkling beetle Zophobas morio. The isolate was fully resistant to aztreonam and possessed a novel class D ß-lactamase gene. The 3,325,929-bp genome consists of a chromosome and a 9,996-bp plasmid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA