Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 122: 103372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759469

RESUMO

PURPOSE: Although emerging clinical evidence supports robotic radiosurgery as a highly effective treatment option for renal cell carcinoma (RCC) less than 4 cm in diameter, delivery uncertainties and associated target volume margins have not been studied in detail. We assess intrafraction tumor motion patterns and accuracy of robotic radiosurgery in renal tumors with real-time respiratory tracking to optimize treatment margins. METHODS: Delivery log files from 165 consecutive treatments of RCC were retrospectively analyzed. Five components were considered for planning target volume (PTV) margin estimation: (a) The model error from the correlation model between patient breath and tumor motion, (b) the prediction error from an algorithm predicting the patient breathing pattern, (c) the targeting error from the treatment robot, (d) the inherent total accuracy of the system for respiratory motion tracking, and (e) the margin required to cover potential target rotation, simulated with PTV rotations up to 10°. RESULTS: The median tumor motion was 10.5 mm, 2.4 mm and 4.4 mm in the superior-inferior, left-right, and anterior-posterior directions, respectively. The root of the sum of squares of all contributions to the system's inaccuracy results in a minimum PTV margin of 4.3 mm, 2.6 mm and 3.0 mm in the superior-inferior, left-right and anterior-posterior directions, respectively, assuming optimal fiducial position and neglecting target deformation. CONCLUSIONS: We have assessed kidney motion and derived PTV margins for the treatment of RCC with robotic radiosurgery, which helps to deliver renal treatments in a more consistent manner and potentially further improve outcomes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Radiocirurgia , Procedimentos Cirúrgicos Robóticos , Radiocirurgia/métodos , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/radioterapia , Humanos , Neoplasias Renais/cirurgia , Neoplasias Renais/radioterapia , Estudos Retrospectivos , Movimento , Planejamento da Radioterapia Assistida por Computador/métodos , Masculino , Feminino , Respiração , Pessoa de Meia-Idade , Idoso
2.
World Neurosurg ; 164: e420-e426, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568128

RESUMO

BACKGROUND: Self-shielding gyroscopic radiosurgery (GRS) represents a technical innovation in the field of stereotactic radiosurgery. GRS does not require a radiation vault and is optimized for radiosurgical treatments. Reports on its usage are limited. We describe the first clinical experience of GRS at our institution to assess the application of GRS in the treatment of cranial tumors. Moreover, we perform a dosimetric comparison to robotic radiosurgery (RRS) with vestibular schwannoma (VS) GRS patients. METHODS: Patients who were treated with GRS between July and November 2021 were included. Patient, tumor, and dosimetric characteristics were retrospectively summarized and analyzed. RESULTS: Forty-one patients with 48 intracranial tumors were included. Tumor entities mostly comprised VS, brain metastases, and meningiomas. The median prescription dose and isodose line were 13.5 Gy and 50.0% for benign neoplasia versus 20 Gy and 60.0% for malignant tumors, respectively. The mean planning target volume was 1.5 cubic centimeters. All patients received a single-fraction treatment without encountering any technical setup difficulties. Treatment plan comparisons with RRS revealed comparable plan characteristics, dose gradients, and organs at risk doses. Significant differences were detected concerning the new conformity index and number of monitor units per treatment (both P < 0.01). CONCLUSIONS: This case series provides more evidence on the usage of self-shielding GRS in the management of cranial tumors. Dosimetric comparisons for VS cases revealed mostly equivalent dosimetric characteristics to RRS. Further clinical and physical analyses for GRS are underway.


Assuntos
Neoplasias Encefálicas , Neuroma Acústico , Radiocirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Humanos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
3.
Z Med Phys ; 32(3): 296-311, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35504799

RESUMO

Frameless single-isocenter non-coplanar stereotactic radiosurgery (SRS) for patients with multiple brain metastases is a treatment at high geometrical complexity. The goal of this study is to analyze the dosimetric impact of non-coplanar image guidance with stereoscopic X-ray imaging. Such an analysis is meant to provide insights on the adequacy of safety margins, and to evaluate the benefit of imaging at non-coplanar configurations. The ExacTrac® (ET) system (Brainlab AG, Munich, Germany) was used for stereoscopic X-ray imaging in frameless single-isocenter non-coplanar SRS for multiple brain metastases. Sub-millimeter precision was found for the ET-based pre-treatment setup, whereas a degradation was noted for non-coplanar treatment angles. Misalignments without intra-fractional positioning corrections were reconstructed in 6 degrees of freedom (DoF) to resemble the situation without non-coplanar image guidance. Dose recalculation in 20 SRS patients with applied positioning corrections did not reveal any significant differences in D98% for 75 planning target volumes (PTVs) and gross tumor volumes (GTVs). For recalculation without applied positioning corrections, significant differences (p<0.05) were reported in D98% for both PTVs and GTVs, with stronger effects for small PTV volumes. A worst-case analysis at increasing translational and rotational misalignment revealed that dosimetric changes are a complex function of the combination thereof. This study highlighted the important role of positioning correction with ET at non-coplanar configurations in frameless single-isocenter non-coplanar SRS for patients with multiple brain metastases. Uncorrected patient misalignments at non-coplanar couch angles were linked to a significant loss of PTV coverage, with effects varying according to the combination of single DoF and PTV geometrical properties.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Alemanha , Humanos , Radiometria , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA