Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446521

RESUMO

Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.


Assuntos
Autofagia , Proteômica , Feminino , Gravidez , Animais , Camundongos , Autofagossomos , Neurônios , Proteostase , Proteínas de Membrana/genética , Mamíferos
3.
Elife ; 92020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975518

RESUMO

PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.


Specific arrangements of atoms such as bulky phosphate groups can change the activity of a protein and how it interacts with other molecules. Enzymes called kinases are responsible for adding these groups onto a protein, while phosphatases remove them. Kinases are generally specific for a small number of proteins, adding phosphate groups only at sites embedded in a particular sequence in the target protein. Phosphatases, however, are generalists: only a few different types exist, which exhibit little target sequence specificity. Partner proteins can attach to phosphatases to bring the enzymes to specific locations in the cell, or to deliver target proteins to them; yet, it is unclear whether partner binding could also change the structure of the enzyme so the phosphatase can recognise only a restricted set of targets. To investigate this, Fedoryshchak, Prechová et al. studied a phosphatase called PP1 and its partner, Phactr1. First, the structure of the Phactr1/PP1 complex was examined using biochemistry approaches and X-ray crystallography. This showed that binding of Phactr1 to PP1 creates a new surface pocket, which comprised elements of both proteins. In particular, this composite pocket is located next to the part of the PP1 enzyme responsible for phosphate removal. Next, mass spectrometry and genetics methods were harnessed to identify and characterise the targets of the Phactr1/PP1 complex. Structural analysis of the proteins most susceptible to Phactr1/PP1 activity showed that they had particular sequences that could interact with Phactr1/PP1's composite pocket. Further experiments revealed that, compared to PP1 acting alone, the pocket increased the binding efficiency and reactivity of the complex 100-fold. This work demonstrates that a partner protein can make phosphatases more sequence-specific, suggesting that future studies could adopt a similar approach to examine how other enzymes in this family perform their role. In addition, the results suggest that it will be possible to design Phactr1/PP1-specific drugs that act on the composite pocket. This would represent an important proof of principle, since current phosphatase-specific drugs do not target particular phosphatase complexes.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Animais , Domínio Catalítico , Cristalização , Citoesqueleto/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas do Tecido Nervoso/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Espectrina/metabolismo , Especificidade por Substrato
4.
Nat Commun ; 11(1): 2380, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404936

RESUMO

YAP1 gene fusions have been observed in a subset of paediatric ependymomas. Here we show that, ectopic expression of active nuclear YAP1 (nlsYAP5SA) in ventricular zone neural progenitor cells using conditionally-induced NEX/NeuroD6-Cre is sufficient to drive brain tumour formation in mice. Neuronal differentiation is inhibited in the hippocampus. Deletion of YAP1's negative regulators LATS1 and LATS2 kinases in NEX-Cre lineage in double conditional knockout mice also generates similar tumours, which are rescued by deletion of YAP1 and its paralog TAZ. YAP1/TAZ-induced mouse tumours display molecular and ultrastructural characteristics of human ependymoma. RNA sequencing and quantitative proteomics of mouse tumours demonstrate similarities to YAP1-fusion induced supratentorial ependymoma. Finally, we find that transcriptional cofactor HOPX is upregulated in mouse models and in human YAP1-fusion induced ependymoma, supporting their similarity. Our results show that uncontrolled YAP1/TAZ activity in neuronal precursor cells leads to ependymoma-like tumours in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ependimoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/genética , Criança , Ependimoma/genética , Ependimoma/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
5.
PLoS One ; 13(12): e0209077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566508

RESUMO

The heat shock response (HSR) pathway is a highly conserved cellular stress response and mediated by its master regulator HSF1. Activation of the pathway results in the expression of chaperone proteins (heat shock proteins; HSP) to maintain protein homeostasis. One of the genes strongest upregulated upon stress is HSPA1A (HSP72). Heavy metals are highly toxic to living organisms and known as environmental contaminants, due to industrialisation. Furthermore, many of them are well-described inducers of the HSR pathway. Here we compare the effect of different heavy metals, concerning their potential to activate HSF1 with a sensitive artificial heat shock reporter cell line, consisting of heat shock elements (HSE). In general the responses of the artificial promoter to heavy metal stress were in good agreement with those of well-established HSF1 target genes, like HSPA1A. Nevertheless, differences were observable when effects of heat and heavy metal stress were compared. Whereas heat stress preferentially activated the HSE promoter, heavy metals more strongly induced the HSPA1A promoter. We therefore analysed the HSPA1A promoter in more detail, by isolating and mutating the HSEs. The results indicate that the importance of the individual binding sites for HSF1 is determined by their sequence similarity to the consensus sequence and their position relative to the transcription start site, but they were not differentially affected by heat or heavy metal stress. In contrast, we found that other parts of the HSPA1A promoter have different impact on the response under different stress conditions. In this work we provide deeper insights into the regulation of HSP72 expression as a well as a method to quantitatively and sensitively evaluate different stressor on their potential to activate HSF1.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Metais Pesados/toxicidade , Linhagem Celular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Humanos , Metais Pesados/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
6.
Life Sci Alliance ; 1(6): e201800118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30623173

RESUMO

Cyclin G-associated kinase (GAK) is a ubiquitous serine/threonine kinase that facilitates clathrin uncoating during vesicle trafficking. GAK phosphorylates a coat adaptor component, AP2M1, to help achieve this function. GAK is also implicated in Parkinson's disease through genome-wide association studies. However, GAK's role in mammalian neurons remains unclear, and insight may come from identification of further substrates. Employing a chemical genetics method, we show here that the sodium potassium pump (Na+/K+-ATPase) α-subunit Atp1a3 is a GAK target and that GAK regulates Na+/K+-ATPase trafficking to the plasma membrane. Whole-cell patch clamp recordings from CA1 pyramidal neurons in GAK conditional knockout mice show a larger change in resting membrane potential when exposed to the Na+/K+-ATPase blocker ouabain, indicating compromised Na+/K+-ATPase function in GAK knockouts. Our results suggest a modulatory role for GAK via phosphoregulation of substrates such as Atp1a3 during cargo trafficking.

7.
Cell Rep ; 9(5): 1781-1797, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25464844

RESUMO

Loss of heterozygosity (LOH) of the adenomatous polyposis coli (APC) gene triggers a series of molecular events leading to intestinal adenomagenesis. Haploinsufficiency of the cohesin Rad21 influences multiple initiating events in colorectal cancer (CRC). We identify Rad21 as a gatekeeper of LOH and a ß-catenin target gene and provide evidence that Wnt pathway activation drives RAD21 expression in human CRC. Genome-wide analyses identified Rad21 as a key transcriptional regulator of critical CRC genes and long interspersed element (LINE-1 or L1) retrotransposons. Elevated RAD21 expression tracks with reactivation of L1 expression in human sporadic CRC, implicating cohesin-mediated L1 expression in global genomic instability and gene dysregulation in cancer.


Assuntos
Polipose Adenomatosa do Colo/genética , Haploinsuficiência , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Polipose Adenomatosa do Colo/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Proteínas de Ciclo Celular , Proliferação de Células , Instabilidade Cromossômica , Colo/patologia , Dano ao DNA , Proteínas de Ligação a DNA , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Camundongos Transgênicos , Retroelementos/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA