Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microbes Infect ; 25(7): 105174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37348752

RESUMO

BACKGROUND: It is largely unknown whether the gut microbiome regulates immune responses in humans. We determined relationships between the microbiota composition and immunological phenotypes in 108 healthy volunteers, using 16S sequencing, an ex vivo monocyte challenge model, and an in vivo challenge model of systemic inflammation induced by lipopolysaccharide (LPS). RESULTS: Significant associations were observed between the microbiota composition and ex vivo monocytic cytokine responses induced by several stimuli, most notably IL-10 production induced by Pam3Cys, Pseudomonas aeruginosa and Candida albicans, although the explained variance was rather low (0.3-4.8%). Furthermore, a number of pairwise correlations between Blautia, Bacteroides and Prevotella genera and cytokine production induced by these stimuli were identified. LPS administration induced a profound transient in vivo inflammatory response. A second LPS challenge one week after the first resulted in a severely blunted response, reflecting endotoxin tolerance. However, no significant relationships between microbiota composition and in vivo parameters of inflammation or tolerance were found (explained variance ranging from 0.4 to 1.5%, ns). CONCLUSIONS: The gut microbiota composition explains a limited degree of variance in ex vivo monocytic cytokine responses to several pathogenic stimuli, but no relationships with the LPS-induced in vivo immune response or tolerance was observed.


Assuntos
Endotoxinas , Microbioma Gastrointestinal , Humanos , Endotoxinas/toxicidade , Lipopolissacarídeos , Tolerância à Endotoxina , Citocinas , Inflamação , Imunidade
2.
Eur J Neurosci ; 58(1): 2215-2231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203224

RESUMO

Early life stress (ELS) is associated with metabolic, cognitive, and psychiatric diseases and has a very high prevalence, highlighting the urgent need for a better understanding of the versatile physiological changes and identification of predictive biomarkers. In addition to programming the hypothalamic-pituitary-adrenal (HPA) axis, ELS may also affect the gut microbiota and metabolome, opening up a promising research direction for identifying early biomarkers of ELS-induced (mal)adaptation. Other factors affecting these parameters include maternal metabolic status and diet, with maternal obesity shown to predispose offspring to later metabolic disease. The aim of the present study was to investigate the long-term effects of ELS and maternal obesity on the metabolic and stress phenotype of rodent offspring. To this end, offspring of both sexes were subjected to an adverse early-life experience, and their metabolic and stress phenotypes were examined. In addition, we assessed whether a prenatal maternal and an adult high-fat diet (HFD) stressor further shape observed ELS-induced phenotypes. We show that ELS has long-term effects on male body weight (BW) across the lifespan, whereas females more successfully counteract ELS-induced weight loss, possibly by adapting their microbiota, thereby stabilizing a balanced metabolome. Furthermore, the metabolic effects of a maternal HFD on BW are exclusively triggered by a dietary challenge in adult offspring and are more pronounced in males than in females. Overall, our study suggests that the female microbiota protects against an ELS challenge, rendering them more resilient to additional maternal- and adult nutritional stressors than males.


Assuntos
Experiências Adversas da Infância , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Camundongos , Feminino , Masculino , Humanos , Gravidez , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Roedores , Biomarcadores , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
iScience ; 26(4): 106483, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096035

RESUMO

In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.

4.
J Invest Dermatol ; 143(8): 1498-1508.e7, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804407

RESUMO

Late cornified envelope (LCE) proteins are small cationic epidermal proteins with antimicrobial properties, and the combined deletion of LCE3B and LCE3C genes is a risk factor for psoriasis that affects skin microbiome composition. In a yeast two-hybrid screen, we identified CYSRT1 as an interacting partner of members of all LCE groups except LCE6. These interactions were confirmed in a mammalian cell system by coimmunoprecipitation. CYSRT1 is a protein of unknown function that is specifically expressed in cutaneous and oral epithelia and spatially colocalizes with LCE proteins in the upper layers of the suprabasal epidermis. Constitutive CYSRT1 expression is present in fully differentiated epidermis and can be further induced in vivo by disruption of the skin barrier upon stratum corneum removal. Transcriptional regulation correlates to keratinocyte terminal differentiation but not to skin bacteria exposure. Similar to LCEs, CYSRT1 was found to have antibacterial activity against Pseudomonas aeruginosa. Comparative gene sequence analysis and protein amino acid alignment indicate that CYSRT1 is highly conserved among vertebrates and has putative antimicrobial activity. To summarize, we identified CYSRT1 in the outer skin layer, where it colocalizes with LCE proteins and contributes to the constitutive epidermal antimicrobial host defense repertoire.


Assuntos
Anti-Infecciosos , Psoríase , Anti-Infecciosos/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Pele/metabolismo , Humanos
5.
Front Mol Biosci ; 9: 967205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452456

RESUMO

Advances in omics technologies allow for holistic studies into biological systems. These studies rely on integrative data analysis techniques to obtain a comprehensive view of the dynamics of cellular processes, and molecular mechanisms. Network-based integrative approaches have revolutionized multi-omics analysis by providing the framework to represent interactions between multiple different omics-layers in a graph, which may faithfully reflect the molecular wiring in a cell. Here we review network-based multi-omics/multi-modal integrative analytical approaches. We classify these approaches according to the type of omics data supported, the methods and/or algorithms implemented, their node and/or edge weighting components, and their ability to identify key nodes and subnetworks. We show how these approaches can be used to identify biomarkers, disease subtypes, crosstalk, causality, and molecular drivers of physiological and pathological mechanisms. We provide insight into the most appropriate methods and tools for research questions as showcased around the aetiology and treatment of COVID-19 that can be informed by multi-omics data integration. We conclude with an overview of challenges associated with multi-omics network-based analysis, such as reproducibility, heterogeneity, (biological) interpretability of the results, and we highlight some future directions for network-based integration.

6.
J Invest Dermatol ; 142(7): 1947-1955.e6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34942199

RESUMO

Late cornified envelope proteins are predominantly expressed in the skin and other cornified epithelia. On the basis of sequence similarity, this 18-member homologous gene family has been subdivided into six groups. The LCE3 proteins have been the focus of dermatological research because the combined deletion of LCE3B and LCE3C genes (LCE3B/C-del) is a risk factor for psoriasis. We previously reported that LCE3B/C-del increases the expression of the LCE3A gene and that LCE3 proteins exert antibacterial activity. In this study, we analyzed the antimicrobial properties of other family members and the role of LCE3B/C-del in the modulation of microbiota composition of the skin and oral cavity. Differences in killing efficiency and specificity between the late cornified envelope proteins and their target microbes were found, and the amino acid content rather than the order of the well-conserved central domain of the LCE3A protein was found responsible for its antibacterial activity. In vivo, LCE3B/C-del correlated with a higher beta-diversity in the skin and oral microbiota. From these results, we conclude that all late cornified envelope proteins possess antimicrobial activity. Tissue-specific and genotype-dependent antimicrobial protein profiles impact skin and oral microbiota composition, which could direct toward LCE3B/C-del‒associated dysbiosis and a possible role for microbiota in the pathophysiology of psoriasis.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo , Microbiota , Psoríase , Proteínas Ricas em Prolina do Estrato Córneo/genética , Deleção de Genes , Predisposição Genética para Doença , Humanos , Microbiota/genética , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Fatores de Risco
7.
Brain Behav Immun ; 100: 311-320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34920092

RESUMO

Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.


Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Pré-Escolar , Cognição , Feminino , Microbioma Gastrointestinal/genética , Humanos , Recém-Nascido , Sobrepeso , Gravidez , RNA Ribossômico 16S/genética
8.
BMC Biol ; 19(1): 267, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915863

RESUMO

BACKGROUND: The cervicovaginal microbiome (CVM) plays a significant role in women's cervical health and disease. Microbial alterations at the species level and characteristic community state types (CST) have been associated with acquisition and persistence of high-risk human papillomavirus (hrHPV) infections that may result in progression of cervical lesions to malignancy. Current sequencing methods, especially most commonly used multiplex 16S rRNA gene sequencing, struggle to fully clarify these changes because they generally fail to provide sufficient taxonomic resolution to adequately perform species-level associative studies. To improve CVM species designation, we designed a novel sequencing tool targeting microbes at the species taxonomic rank and examined its potential for profiling the CVM. RESULTS: We introduce an accessible and practical circular probe-based RNA sequencing (CiRNAseq) technology with the potential to profile and quantify the CVM. In vitro and in silico validations demonstrate that CiRNAseq can distinctively detect species in a mock mixed microbial environment, with the output data reflecting its ability to estimate microbes' abundance. Moreover, compared to 16S rRNA gene sequencing, CiRNAseq provides equivalent results but with improved sequencing sensitivity. Analyses of a cohort of cervical smears from hrHPV-negative women versus hrHPV-positive women with high-grade cervical intraepithelial neoplasia confirmed known differences in CST occurring in the CVM of women with hrHPV-induced lesions. The technique also revealed variations in microbial diversity and abundance in the CVM of hrHPV-positive women when compared to hrHPV-negative women. CONCLUSIONS: CiRNAseq is a promising tool for studying the interplay between the CVM and hrHPV in cervical carcinogenesis. This technology could provide a better understanding of cervicovaginal CST and microbial species during health and disease, prompting the discovery of biomarkers, additional to hrHPV, that can help detect high-grade cervical lesions.


Assuntos
Microbiota , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Microbiota/genética , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , RNA Ribossômico 16S/genética , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética
9.
Exp Dermatol ; 30(12): 1775-1786, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252224

RESUMO

Hand eczema is a common inflammatory skin condition of the hands whose pathogenesis is largely unknown. More insight and knowledge of the disease on a more fundamental level might lead to a better understanding of the biological processes involved, which could provide possible new treatment strategies. We aimed to profile the transcriptome of lesional palmar epidermal skin of patients suffering from vesicular hand eczema using RNA-sequencing. RNA-sequencing was performed to identify differentially expressed genes in lesional vs. non-lesional palmar epidermal skin from a group of patients with vesicular hand eczema compared to healthy controls. Comprehensive real-time quantitative PCR analyses and immunohistochemistry were used for validation of candidate genes and protein profiles for vesicular hand eczema. Overall, a significant and high expression of genes/proteins involved in keratinocyte host defense and inflammation was found in lesional skin. Furthermore, we detected several molecules, both up or downregulated in lesional skin, which are involved in epidermal differentiation. Immune signalling genes were found to be upregulated in lesional skin, albeit with relatively low expression levels. Non-lesional patient skin showed no significant differences compared to healthy control skin. Lesional vesicular hand eczema skin shows a distinct expression profile compared to non-lesional skin and healthy control skin. Notably, the overall results indicate a large overlap between vesicular hand eczema and earlier reported atopic dermatitis lesional transcriptome profiles, which suggests that treatments for atopic dermatitis could also be effective in (vesicular) hand eczema.


Assuntos
Eczema/fisiopatologia , Dermatoses da Mão/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Eczema/genética , Feminino , Dermatoses da Mão/genética , Humanos , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
10.
Virulence ; 11(1): 1310-1328, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017224

RESUMO

Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite for pneumococcal transmission and disease. Current vaccines protect only against disease and colonization caused by a limited number of serotypes, consequently allowing serotype replacement and transmission. Therefore, the development of a broadly protective vaccine against colonization, transmission and disease is desired but requires a better understanding of pneumococcal adaptation to its natural niche. Hence, we measured the levels of free and protein-bound transition metals in human nasal fluid, to determine the effect of metal concentrations on the growth and proteome of S. pneumoniae. Pneumococci cultured in medium containing metal levels comparable to nasal fluid showed a highly distinct proteomic profile compared to standard culture conditions, including the increased abundance of nine conserved, putative surface-exposed proteins. AliA, an oligopeptide binding protein, was identified as the strongest protective antigen, demonstrated by the significantly reduced bacterial load in a murine colonization and a lethal mouse pneumonia model, highlighting its potential as vaccine antigen.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Metais/farmacologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/efeitos dos fármacos , Adulto , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Meios de Cultura/química , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana/imunologia , Metais/análise , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Líquido da Lavagem Nasal/química , Nasofaringe/microbiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Adulto Jovem
11.
J Dermatol ; 47(10): 1110-1118, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32804417

RESUMO

Microbiota live in a closely regulated interaction with their environment, and vice versa. The presence and absence of microbial entities is greatly influenced by features of the niche in which they thrive. Characteristic of this phenomenon is that different human skin sites harbor niche-specific communities of microbes. Microbial diversity is considerable, and the current challenge lies in determining which microbes and (corresponding) functionality are of importance to a given ecological niche. Furthermore, as there is increasing evidence of microbial involvement in health and disease, the need arises to fundamentally understand microbiome processes for application in health care, nutrition and personal care products (e.g. diet, cosmetics, probiotics). This review provides a current overview of state-of-the-art sequencing-based techniques and corresponding data analysis methodology for profiling of complex microbial communities. Furthermore, we also summarize the existing knowledge regarding cutaneous microbiota and their human host for a wide range of skin diseases.


Assuntos
Microbiota , Probióticos , Biologia , Dieta , Humanos , Pele
12.
Vaccines (Basel) ; 8(2)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560374

RESUMO

Streptococcus pneumoniae infections lead to high morbidity and mortality rates worldwide. Pneumococcal polysaccharide conjugate vaccines significantly reduce the burden of disease but have a limited range of protection, which encourages the development of a broadly protective protein-based alternative. We and others have shown that immunization with pneumococcal lipoproteins that lack the lipid anchor protects against colonization. Since immunity against S. pneumoniae is mediated through Toll-like receptor 2 signaling induced by lipidated proteins, we investigated the effects of a lipid modification on the induced immune responses in either intranasally or subcutaneously vaccinated mice. Here, we demonstrate that lipidation of recombinant lipoproteins DacB and PnrA strongly improves their immunogenicity. Mice immunized with lipidated proteins showed enhanced antibody concentrations and different induction kinetics. The induced humoral immune response was modulated by lipidation, indicated by increased IgG2/IgG1 subclass ratios related to Th1-type immunity. In a mouse model of colonization, immunization with lipidated antigens led to a moderate but consistent reduction of pneumococcal colonization as compared to the non-lipidated proteins, indicating that protein lipidation can improve the protective capacity of the coupled antigen. Thus, protein lipidation represents a promising approach for the development of a serotype-independent pneumococcal vaccine.

13.
J Invest Dermatol ; 140(2): 415-424.e10, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31344386

RESUMO

Skin colonization by Staphylococcus aureus and its relative abundance is associated with atopic dermatitis (AD) disease severity and treatment response. Low levels of antimicrobial peptides in AD skin may be related to the microbial dysbiosis. Therapeutic targeting of the skin microbiome and antimicrobial peptide expression can, therefore, restore skin homeostasis and combat AD. In this study, we analyzed the cutaneous microbiome composition in 7 patients with AD and 10 healthy volunteers upon topical coal tar or vehicle treatment. We implemented and validated a Staphylococcus-specific single-locus sequence typing approach combined with classic 16S ribosomal RNA marker gene sequencing to study the bacterial composition. During coal tar treatment, Staphylococcus abundance decreased, and Propionibacterium abundance increased, suggesting a shift of the microbiota composition toward that of healthy controls. We, furthermore, identified a hitherto unknown therapeutic mode of action of coal tar, namely the induction of keratinocyte-derived antimicrobial peptides via activation of the aryl hydrocarbon receptor. Restoring antimicrobial peptide levels in AD skin via aryl hydrocarbon receptor-dependent transcription regulation can be beneficial by creating a (anti)microbial milieu that is less prone to infection and inflammation. This underscores the importance of coal tar in the therapeutic aryl hydrocarbon receptor armamentarium and highlights the aryl hydrocarbon receptor as a target for drug development.


Assuntos
Anti-Infecciosos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Alcatrão/farmacologia , Dermatite Atópica/tratamento farmacológico , Disbiose/tratamento farmacológico , Microbiota/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Pele/microbiologia , Administração Cutânea , Adulto , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Linhagem Celular , Alcatrão/uso terapêutico , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Disbiose/imunologia , Disbiose/microbiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Queratinócitos , Masculino , Microbiota/imunologia , Pessoa de Meia-Idade , Cultura Primária de Células , Propionibacterium/imunologia , Propionibacterium/isolamento & purificação , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Creme para a Pele/farmacologia , Creme para a Pele/uso terapêutico , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
14.
Sci Rep ; 9(1): 19834, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882601

RESUMO

We present TaxPhlAn, a new method and bioinformatics pipeline for design and analysis of single-locus sequence typing (SLST) markers to type and profile bacteria beyond the species-level in a complex microbial community background. TaxPhlAn can be applied to any group of phylogenetically-related bacteria, provided reference genomes are available. As TaxPhlAn requires the SLST targets identified to fit the phylogenetic pattern as determined through comprehensive evolutionary reconstruction of input genomes, TaxPhlAn allows for the identification and phylogenetic inference of new biodiversity. Here, we present a clinically relevant case study of high-resolution Staphylococcus profiling on skin of atopic dermatitis (AD) patients. We demonstrate that SLST enables profiling of cutaneous Staphylococcus members at (sub)species level and provides higher resolution than current 16S-based techniques. With the higher discriminative ability provided by our approach, we further show that the presence of Staphylococcus capitis on the skin together with Staphylococcus aureus associates with AD disease.


Assuntos
Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Biologia Computacional/métodos , Genes Bacterianos/genética , Microbiota/genética , Bactérias/classificação , Dermatite Atópica/microbiologia , Feminino , Humanos , Masculino , Filogenia , Pele/microbiologia , Pele/patologia , Especificidade da Espécie , Infecções Estafilocócicas/microbiologia , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus/fisiologia , Fluxo de Trabalho
15.
FASEB J ; 33(10): 11235-11246, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299175

RESUMO

Proton pump inhibitors (PPIs) are used by millions of patients for the treatment of stomach acid-reflux diseases. Although PPIs are generally considered safe, about 13% of the users develop hypomagnesemia. Despite rising attention for this issue, the underlying mechanism is still unknown. Here, we examine whether the gut microbiome is involved in the development of PPI-induced hypomagnesemia in wild-type C57BL/6J mice. After 4 wk of treatment under normal or low dietary Mg2+ availability, omeprazole significantly reduced serum Mg2+ levels only in mice on a low-Mg2+ diet without affecting the mRNA expression of colonic or renal Mg2+ transporters. Overall, 16S rRNA gene sequencing revealed a lower gut microbial diversity in omeprazole-treated mice. Omeprazole induced a shift in microbial composition, which was associated with a 3- and 2-fold increase in the abundance of Lactobacillus and Bifidobacterium, respectively. To examine the metabolic consequences of these microbial alterations, the colonic composition of organic acids was evaluated. Low dietary Mg2+ intake, independent of omeprazole treatment, resulted in a 10-fold increase in formate levels. Together, these results imply that both omeprazole treatment and low dietary Mg2+ intake disturb the gut internal milieu and may pose a risk for the malabsorption of Mg2+ in the colon.-Gommers, L. M. M., Ederveen, T. H. A., van der Wijst, J., Overmars-Bos, C., Kortman, G. A. M., Boekhorst, J., Bindels, R. J. M., de Baaij, J. H. F., Hoenderop, J. G. J. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia.


Assuntos
Microbioma Gastrointestinal/fisiologia , Magnésio/metabolismo , Inibidores da Bomba de Prótons/efeitos adversos , Animais , Bifidobacterium/fisiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Dieta , Lactobacillus/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Omeprazol/efeitos adversos , RNA Ribossômico 16S/metabolismo
16.
PLoS One ; 14(7): e0219366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283798

RESUMO

The intestinal microbiome is perturbed in patients with new-onset and chronic autoimmune inflammatory arthritis. Recent studies in mouse models suggest that development and progression of autoimmune arthritis is highly affected by the intestinal microbiome. This makes modulation of the intestinal microbiota an interesting novel approach to suppress inflammatory arthritis. Prebiotics, defined as non-digestible carbohydrates that selectively stimulate the growth and activity of beneficial microorganisms, provide a relatively non-invasive approach to modulate the intestinal microbiota. The aim of this study was to assess the therapeutic potential of dietary supplementation with a prebiotic mixture of 90% short-chain galacto-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/lcFOS) in experimental arthritis in mice. We here show that dietary supplementation with scGOS/lcFOS has a pronounced effect on the composition of the fecal microbiota. Interestingly, the genera Enterococcus and Clostridium were markedly decreased by scGOS/lcFOS dietary supplementation. In contrast, the family Lachnospiraceae and the genus Lactobacillus, both associated with healthy microbiota, increased in mice receiving scGOS/lcFOS diet. However, the scGOS/lcFOS induced alterations of the intestinal microbiota did not induce significant effects on the intestinal and systemic T helper cell subsets and were not sufficient to reproducibly suppress arthritis in mice. As expected, we did observe a significant increase in the bone mineral density in mice upon dietary supplementation with scGOS/lcFOS for 8 weeks. Altogether, this study suggests that dietary scGOS/lcFOS supplementation is able to promote presumably healthy gut microbiota and improve bone mineral density, but not inflammation, in arthritis-prone mice.


Assuntos
Artrite Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/genética , Oligossacarídeos/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Prebióticos , Receptores de Interleucina-1 , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
17.
Vet Microbiol ; 229: 90-99, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642603

RESUMO

Canine atopic dermatitis is a genetically predisposed inflammatory and pruritic allergic skin disease that is often complicated by (secondary) bacterial and fungal (yeast) infections. High-throughput DNA sequencing was used to characterize the composition of the microbiome (bacteria and fungi) inhabiting specific sites of skin in healthy dogs and dogs with atopic dermatitis (AD) before and after topical antimicrobial treatment. Skin microbiome samples were collected from six healthy control dogs and three dogs spontaneously affected by AD by swabbing at (non-) predilection sites before, during and after treatment. Bacteria and fungi were profiled by Illumina sequencing of the 16S ribosomal RNA gene of bacteria (16S) and the internally transcribed spacer of the ribosomal gene cassette in fungi (ITS). The total cohort of dogs showed a high diversity of microbes on skin with a strong individual variability of both 16S and ITS profiles. The genera of Staphylococcus and Porphyromonas were dominantly present both on atopic and healthy skin and across all skin sites studied. In addition, bacterial and fungal alpha diversity were similar at the different skin sites. The topical antimicrobial treatment increased the diversity of bacterial and fungal compositions in course of time on both AD and healthy skin.


Assuntos
Antibacterianos/uso terapêutico , Dermatite Atópica/veterinária , Doenças do Cão/microbiologia , Pele/microbiologia , Administração Tópica , Animais , Estudos de Casos e Controles , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Dermatite Atópica/microbiologia , Cães , Feminino , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
19.
Microbiome ; 6(1): 10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29325581

RESUMO

BACKGROUND: While almost all infants are infected with respiratory syncytial virus (RSV) before the age of 2 years, only a small percentage develops severe disease. Previous studies suggest that the nasopharyngeal microbiome affects disease development. We therefore studied the effect of the nasopharyngeal microbiome on viral load and mucosal cytokine responses, two important factors influencing the pathophysiology of RSV disease. To determine the relation between (i) the microbiome of the upper respiratory tract, (ii) viral load, and (iii) host mucosal inflammation during an RSV infection, nasopharyngeal microbiota profiles of RSV infected infants (< 6 months) with different levels of disease severity and age-matched healthy controls were determined by 16S rRNA marker gene sequencing. The viral load was measured using qPCR. Nasopharyngeal CCL5, CXCL10, MMP9, IL6, and CXCL8 levels were determined with ELISA. RESULTS: Viral load in nasopharyngeal aspirates of patients associates significantly to total nasopharyngeal microbiota composition. Healthy infants (n = 21) and RSV patients (n = 54) display very distinct microbial patterns, primarily characterized by a loss in commensals like Veillonella and overrepresentation of opportunistic organisms like Haemophilus and Achromobacter in RSV-infected individuals. Furthermore, nasopharyngeal microbiota profiles are significantly different based on CXCL8 levels. CXCL8 is a chemokine that was previously found to be indicative for disease severity and for which we find Haemophilus abundance as the strongest predictor for CXCL8 levels. CONCLUSIONS: The nasopharyngeal microbiota in young infants with RSV infection is marked by an overrepresentation of the genus Haemophilus. We present that this bacterium is associated with viral load and mucosal CXCL8 responses, both which are involved in RSV disease pathogenesis.


Assuntos
Haemophilus/classificação , Interleucina-8/metabolismo , Nasofaringe/microbiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Haemophilus/genética , Haemophilus/isolamento & purificação , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , RNA Ribossômico 16S/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Análise de Sequência de DNA/métodos , Regulação para Cima , Carga Viral
20.
PLoS One ; 12(9): e0183509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863139

RESUMO

BACKGROUND: Microorganisms in the human intestine (i.e. the gut microbiome) have an increasingly recognized impact on human health, including brain functioning. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with abnormalities in dopamine neurotransmission and deficits in reward processing and its underlying neuro-circuitry including the ventral striatum. The microbiome might contribute to ADHD etiology via the gut-brain axis. In this pilot study, we investigated potential differences in the microbiome between ADHD cases and undiagnosed controls, as well as its relation to neural reward processing. METHODS: We used 16S rRNA marker gene sequencing (16S) to identify bacterial taxa and their predicted gene functions in 19 ADHD and 77 control participants. Using functional magnetic resonance imaging (fMRI), we interrogated the effect of observed microbiome differences in neural reward responses in a subset of 28 participants, independent of diagnosis. RESULTS: For the first time, we describe gut microbial makeup of adolescents and adults diagnosed with ADHD. We found that the relative abundance of several bacterial taxa differed between cases and controls, albeit marginally significant. A nominal increase in the Bifidobacterium genus was observed in ADHD cases. In a hypothesis-driven approach, we found that the observed increase was linked to significantly enhanced 16S-based predicted bacterial gene functionality encoding cyclohexadienyl dehydratase in cases relative to controls. This enzyme is involved in the synthesis of phenylalanine, a precursor of dopamine. Increased relative abundance of this functionality was significantly associated with decreased ventral striatal fMRI responses during reward anticipation, independent of ADHD diagnosis and age. CONCLUSIONS: Our results show increases in gut microbiome predicted function of dopamine precursor synthesis between ADHD cases and controls. This increase in microbiome function relates to decreased neural responses to reward anticipation. Decreased neural reward anticipation constitutes one of the hallmarks of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/microbiologia , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal , Recompensa , Adolescente , Adulto , Bifidobacterium/isolamento & purificação , Estudos de Coortes , Feminino , Gastroenteropatias/complicações , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Projetos Piloto , Prefenato Desidratase/metabolismo , RNA Ribossômico 16S/genética , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA