Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Assuntos
Peptídeos beta-Amiloides , Corantes Fluorescentes , Pirenos , Corantes Fluorescentes/química , Pirenos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagem , Teoria da Densidade Funcional , Isomerismo , Espectrometria de Fluorescência
2.
J Phys Chem A ; 127(28): 5841-5850, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37427990

RESUMO

The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.

3.
Chem Sci ; 13(40): 11904-11911, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320900

RESUMO

We report the first example of direct far-red triplet sensitized molecular photoswitching in a condensed phase wherein a liquid azobenzene derivative (Azo1) co-assembled within a liquid surfactant-protein film undergoes triplet sensitized Z-to-E photoswitching upon far-red/red light excitation in air. The role of triplet sensitization in photoswitching has been confirmed by quenching of sensitizer phosphorescence by Z-Azo1 and temperature-dependent photoswitching experiments. Herein, we demonstrate new biosustainable fabrication designs to address key challenges in solid-state photoswitching, effectively mitigating chromophore aggregation and requirement of high energy excitations by dispersing the photoswitch in the trapped liquid inside the solid framework and by shifting the action spectrum from blue-green light (450-560 nm) to the far-red/red light (740/640 nm) region.

4.
J Mater Chem A Mater ; 10(40): 21279-21290, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325268

RESUMO

Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)2(TFSI)2), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)2(TFSI)2 bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.

5.
Chem Sci ; 13(17): 4944-4954, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655894

RESUMO

Three pentacene dimers have been synthesized to investigate the effect of molecular rotation and rotational conformations on singlet fission (SF). In all three dimers, the pentacene units are linked by a 1,4-diethynylphenylene spacer that provides almost unimpeded rotational freedom between the pentacene- and phenylene-subunits in the parent dimer. Substituents on the phenylene spacer add varying degrees of steric hindrance that restricts both the rotation and the equilibrium distribution of different conformers; the less restricted conformers exhibit faster SF and more rapid subsequent triplet-pair recombination. Furthermore, the rotational conformers have small shifts in their absorption spectra and this feature has been used to selectively excite different conformers and study the resulting SF. Femtosecond transient absorption studies at 100 K reveal that the same dimer can have orders of magnitude faster SF in a strongly coupled conformer compared to a more weakly coupled one. Measurements in polystyrene further show that the SF rate is nearly independent of viscosity whereas the triplet pair lifetime is considerably longer in a high viscosity medium. The results provide insight into design criteria for maintaining high initial SF rate while suppressing triplet recombination in intramolecular singlet fission.

6.
Photochem Photobiol Sci ; 21(7): 1143-1158, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441266

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which low-energy light is transformed into light of higher energy. During the last two decades, it has gained increasing attention due to its potential in, e.g., biological applications and solar energy conversion. The highest efficiencies for TTA-UC systems have been achieved in liquid solution, owing to that several of the intermediate steps require close contact between the interacting species, something that is more easily achieved in diffusion-controlled environments. There is a good understanding of the kinetics dictating the performance in liquid TTA-UC systems, but so far, the community lacks cohesiveness in terms of how several important parameters are best determined experimentally. In this perspective, we discuss and present a "best practice" for the determination of several critical parameters in TTA-UC, namely triplet excited state energies, rate constants for triplet-triplet annihilation ([Formula: see text]), triplet excited-state lifetimes ([Formula: see text]), and excitation threshold intensity ([Formula: see text]). Finally, we introduce a newly developed method by which [Formula: see text], [Formula: see text], and [Formula: see text] may be determined simultaneously using the same set of time-resolved emission measurements. The experiment can be performed with a simple experimental setup, be ran under mild excitation conditions, and entirely circumvents the need for more challenging nanosecond transient absorption measurements, a technique that previously has been required to extract [Formula: see text]. Our hope is that the discussions and methodologies presented herein will aid the photon upconversion community in performing more efficient and manageable experiments while maintaining-and sometimes increasing-the accuracy and validity of the extracted parameters.


Assuntos
Fótons , Soluções
7.
J Am Chem Soc ; 144(8): 3706-3716, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175751

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence. We report a record-setting internal TTA-UC quantum yield (ΦUC,g) of 16.8% (out of a 50% maximum) for 1,4-bis((triisopropylsilyl)ethynyl)naphthalene, demonstrating the first example of a visible-to-UV TTA-UC system approaching the classical spin-statistical limit of 20%. Three other annihilators, of which 2,5-diphenylfuran has never been used for TTA-UC previously, also showed impressive performances with ΦUC,g above 12%. In addition, a new method to determine the rate constant of TTA is proposed, in which only time-resolved emission measurements are needed, circumventing the need for more challenging transient absorption measurements. The results reported herein represent an important step toward highly efficient visible-to-UV TTA-UC systems that hold great potential for driving high-energy photochemical reactions.


Assuntos
Fótons , Energia Solar
8.
J Am Chem Soc ; 143(45): 19232-19239, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748317

RESUMO

Exciton coupling between the transition dipole moments of ordered dyes in supramolecular assemblies, so-called J/H-aggregates, leads to shifted electronic transitions. This can lower the excited state energy, allowing for emission well into the near-infrared regime. However, as we show here, it is not only the excited state energy modifications that J-aggregates can provide. A bay-alkylated quaterrylene was synthesized, which was found to form J-aggregates in 1,1,2,2-tetrachloroethane. A combination of superradiance and a decreased nonradiative relaxation rate made the J-aggregate four times more emissive than the monomeric counterpart. A reduced nonradiative relaxation rate is a nonintuitive consequence following the 180 nm (3300 cm-1) red-shift of the J-aggregate in comparison to the monomeric absorption. However, the energy gap law, which is commonly invoked to rationalize increased nonradiative relaxation rates with increasing emission wavelength, also contains a reorganization energy term. The reorganization energy is highly suppressed in J-aggregates due to exciton delocalization, and the framework of the energy gap law could therefore reproduce our experimental observations. J-Aggregates can thus circumvent the common belief that lowering the excited state energies results in large nonradiative relaxation rates and are thus a pathway toward highly emissive organic dyes in the NIR regime.

9.
J Phys Chem B ; 125(23): 6255-6263, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081465

RESUMO

In the strive to develop triplet-triplet annihilation photon upconversion (TTA-UC) to become applicable in a viable technology, there is a need to develop upconversion systems that can function well in solid states. One method to achieve efficient solid-state TTA-UC systems is to replace the intermolecular energy-transfer steps with the corresponding intramolecular transfers, thereby minimizing loss channels involved in chromophore diffusion. Herein, we present a study of photon upconversion by TTA internally within a polymeric annihilator network (iTTA). By the design of the annihilator polymer and the choice of experiment conditions, we isolate upconversion emission governed by iTTA within the annihilator particles and eliminate possible external TTA between separate annihilator particles (xTTA). This approach leads to mechanistic insights into the process of iTTA and makes it possible to explore the upconversion kinetics and performance of a polymeric annihilator. In comparison to a monomeric upconversion system that only functions using xTTA, we show that upconversion in a polymeric annihilator is efficient also at extremely low annihilator concentrations and that the overall kinetics is significantly faster. The presented results show that intramolecular photon upconversion is a versatile concept for the development of highly efficient solid-state photon upconversion materials.


Assuntos
Antracenos , Polímeros , Difusão , Transferência de Energia , Fótons
10.
J Phys Chem B ; 123(46): 9934-9943, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647236

RESUMO

In this work we show that the mechanism for singlet excitation energy transfer (SET) in coordination complexes changes upon changing a single atom. SET is governed by two different mechanisms; Förster resonance energy transfer (FRET) based on Coulombic, through-space interactions, or Dexter energy transfer relying on exchange, through-bond interactions. On the basis of time-resolved fluorescence and transient absorption measurements, we conduct a mechanistic study of SET from a set of photoexcited anthracene donors to axially coordinated porphyrin acceptors, revealing the effect of coordination geometry and a very profound effect of the porphyrin central metal atom. We found that FRET is the dominating mechanism of SET for complexes with zinc-octaethylporphyrin (ZnOEP) as the acceptor, while Dexter energy transfer is the dominating mechanism of SET in a corresponding ruthenium complex (RuOEP). In addition, by analyzing the coordination geometry of the complexes and its temperature dependence, the binding angle potential energy of axially coordinated porphyrin complexes could be estimated. The results of this study are of fundamental importance and are discussed with respect to the consequences for developing intramolecular triplet-triplet annihilation photon upconversion in coordination complexes.

11.
Phys Chem Chem Phys ; 20(36): 23195-23201, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30132770

RESUMO

Single-molecule fluorescence emission of certain positive photochromic systems such as diarylethenes have been exploited for biological imaging and optical memory storage applications. However, there is a lack of understanding if negative photochromic systems can be used for such type of applications. Hence, to explore the potential of negative photochromic molecules for possible optical memory storage applications, we have here synthesized and studied a series of four norbornadiene-quadricyclane (NBD-QC) photoswitching molecules. These molecules feature either linearly conjugated or cross-conjugated pi-electron systems. Upon photoisomerization, the UV-vis absorption spectra of the molecules revealed a strong blue shift in the QC-form, with a photoisomerization quantum yield close to 80% for the cross-conjugated systems. In contrast, a strong intrinsic emission (up to Φf = 49%) for the linearly conjugated compounds in the NBD form was observed. Upon light-induced isomerization, the emission was completely turned off in the QC-form in all the compounds studied. Further, the robustness of the system was evaluated by performing several switching cycles. Under nitrogen, the emission can be turned off and recovered with almost no loss of emission. We also show that the QC-form can be photochemically triggered to convert back to the NBD-form using a low energy UV light (340 nm), allowing an all optical conversion to both species. The demonstrated properties can make the NBD-QC system attractive for potential applications such as optical memory storage devices.

12.
Phys Chem Chem Phys ; 20(11): 7549-7558, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492496

RESUMO

Energy and electron transfer reactions are central to many different processes and research fields, from photosynthesis and solar energy harvesting to biological and medical applications. Herein we report a comprehensive study of the singlet and triplet energy transfer dynamics in porphyrin-anthracene coordination complexes. Seven newly synthesized pyridine functionalized anthracene ligands, five with various bridge lengths and two dendrimer structures containing three and seven anthracene units, were prepared. We found that triplet energy transfer from ruthenium octaethylporphyrin to an axially coordinated anthracene is possible, and is in some cases followed by back triplet energy transfer to the porphyrin. The triplet energy transfer follows an exponential distance dependence with an attenuation factor, ß, of 0.64 Å-1. Further, singlet energy transfer from anthracene to the ruthenium porphyrin appears to follow a R6 Förster distance dependence. Porphyrin-anthracene complexes are also used as triplet sensitizers for triplet-triplet annihilation (TTA) based photon upconversion, demonstrating their potential for photophysical and photochemical applications. The triplet lifetime of the complex is extended by the anthracene ligands, resulting in a threefold increase in the upconversion efficiency, ΦUC to 4.5%, compared to the corresponding ruthenium porphyrin-pyridine complex. Based on the results herein we discuss the future design of supra-molecular structures for TTA upconversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA